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3.2.1 Grundlagen und Äquivalenzumformungen . . . . . . . . . . . . . . . . 28
3.2.2 Ungleichungen mit Parametern . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Lineare Ungleichungen mit zwei Unbekannten . . . . . . . . . . . . . . 36

4 Quadratische Gleichungen und Ungleichungen 41
4.1 Quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Lösen quadratischer Gleichungen . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Gleichungen, die auf quadratische Gleichungen führen . . . . . . . . . 41
4.1.3 Grafische Darstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Quadratische Ungleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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1 Terme

1.1 Rechengesetze und Binomische Formeln

Terme umformen und berechnen zu können ist das kleine Einmaleins der Mathematik. Dabei
muss man beachten, in welcher Reihenfolge die Rechenoperationen abzuarbeiten sind. Dies
regelt die sogenannte Zahlenverkehrsordnung:

Zahlenverkehrsordnung:

– Bei gleichrangigen Operationen von links nach rechts vorgehen

– Potenzrechnung geht vor Punktrechnung geht vor Strichrechnung

– Potenzen im Exponenten zuerst; Beispiel: 23
4

= 2(3
4)

Der Term
2 · 54 + 7 + 8(x− 12)x + 72(x+ 8)3

wird demnach wie folgt berechnet:

2 · 54
︸︷︷︸

1.
︸ ︷︷ ︸

2.

+7 + 8(x− 12)
︸ ︷︷ ︸

1.

x

︸ ︷︷ ︸

2.

+ 72
︸︷︷︸

1.

(x+ 8)3
︸ ︷︷ ︸

1.
︸ ︷︷ ︸

2.
︸ ︷︷ ︸

3.

Des Weiteren gelten die folgenden Gesetze:

Kommutativgesetz:
Die Operanden einer Rechenoperation dürfen vertauscht werden. Dies ist für die Addition
und Multiplikation erfüllt:

a+ b = b+ a

a · b = b · a

Bei Subtraktion und Division hingegen ergibt sich:

a− b 6= b− a

a : b 6= b : a

Schreibt man aber die Differenz als Summe und den Quotienten als Produkt, so gilt:

a+ (−b) = (−b) + a

a · 1
b

=
1

b
· a

Assoziativgesetz (
”
Klammerschiebegesetz“):

Sind mehrere Operanden mittels der gleichen Operation verknüpft, so ist es unerheblich,
welche zwei Operanden zuerst zusammengefasst werden. Dies ist wieder für Addition und
Multiplikation erfüllt:

a+ (b+ c) = (a+ b) + c

a · (b · c) = (a · b) · c
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Wichtig bei Potenzen ist:
a(b

c) 6= (ab)c

Distributivgesetz:
Werden zwei Operanden mit einer Operation verknüpft und das Ergebnis mittels einer ande-
ren Operation mit einem dritten Operanden, so regelt das Distributivgesetz die Umformung
des Gesamtterms. Für einfache Berechnungen heißt das:

a(b+ c) = a · b+ a · c

Das Distributivgesetz beschreibt also, wie man Klammern ausmultipliziert.
Als eine Anwendung sollen nun zwei Summen miteinander multipliziert werden:

(3 + a)(x+ 4)

Dies geschieht nach folgender Vorschrift:

”
Jedes Glied der ersten Klammer mit jedem Glied der zweiten Klammer multiplizieren.“
Also ergibt sich bei dem genannten Beispiel:

(3 + a) · (x+ 4) = 3x+ 12 + ax+ 4a

Liest man das Distributivgesetz von rechts nach links, erkennt man das Vorgehen beim Aus-
klammern:
Zuerst identifiziert man Faktoren, die in allen Summanden auftreten. Diese schreibt man vor
die neu erzeugte Klammer. Anschließend dividiert man die ursprünglichen Summanden durch
den Vorfaktor der Klammer und erhält so die neuen Summanden innerhalb der Klammer.
Beispiel:

3xy + 4x2 + x = x(3y + 4x+ 1)

Des Weiteren sind die drei binomischen Formeln nützlich und wichtig:

Die binomischen Formeln

1. (a+ b)2 = a2 + 2ab+ b2

2. (a− b)2 = a2 − 2ab+ b2

3. (a+ b)(a− b) = a2 − b2

Ob es sich bei einer Summe um die ausmultiplizierte Darstellung einer binomischen Formel
handelt, lässt sich gut durch Analyse der Termstruktur feststellen:

– Die erste und die zweite binomische Formel bestehen aus 3 Summanden, die dritte
binomische Formel besteht aus 2 Summanden.

– Bei der ersten und der zweiten binomischen Formel treten jeweils zwei quadratische
Terme auf.

– Der Unterschied zwischen erster und zweiter binomischer Formel besteht lediglich im
Vorzeichen des Terms 2ab.

– Die dritte binomische Formel liegt immer bei Termen der Art
”
Quadratzahl minus

Quadratzahl“ vor.
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1.2 Bruchrechnung, Bruchterme

Bruchrechnung und der Umgang mit Bruchtermen gehören zu den grundlegenden Kernkom-
petenzen in der Mathematik. An dieser Tatsache hat auch die Erfindung des Taschenrechners
und der Computer-Algebra-Systeme nichts geändert. Die Situation ist völlig analog zu der
Erfindung des Autos: Die Existenz und Verfügbarkeit von Autos hat nichts daran geändert,
dass sich der Mensch bewegen sollte und Gehen zu den gesündesten Sportarten gehört; würde
man dies missachten, bekäme man bald gesundheitliche Probleme - eine medizinische Bin-
senweisheit.
Daher werden wir uns nun damit befassen, wie man elementare Rechenoperationen mit
Brüchen ausführt.

Erweitern von Brüchen
Man erweitert einen Bruch, indem man Zähler und Nenner mit der gleichen Zahl oder dem
gleichen Term multipliziert. Dabei bleibt der Wert des Bruches unverändert. So gilt

7

9
=

7 · 5
9 · 5 =

35

45

und allgemein
a

b
=

a · c
b · c

Kürzen eines Bruches
Beim Kürzen eines Bruches werden Zähler und Nenner durch dieselbe Zahl oder denselben
Term dividiert. Somit kann man schreiben

15

27
=

15 : 3

27 : 3
=

5

9

und allgemein
a

b
=

a : c

b : c

Kürzen ist die entscheidende Operation zur Vereinfachung von Brüchen.

Addition und Subtraktion
Zu lösen ist

1

3
+

1

2

Das Ergebnis ist keineswegs 2
5 , denn es gilt 2

5 < 1
2 , aber

1
3 + 1

2 > 1
2 .

Zur Bestimmung der Summe muss man statt dessen, anschaulich gesagt, die beiden Portionen
1
2 und 1

3 (denken Sie an eine Pizza) so in kleinere Portionen aufteilen, dass sich sowohl 1
2 als

auch 1
3 als ein Vielfaches dieser Portionen darstellen lässt.

Da 2 und 3 teilerfremd sind, braucht man lediglich 1
2 in 3 Stücke und 1

3 in 2 Stücke aufzuteilen.
Somit gilt:

1

2
+

1

3
=

3

2 · 3 +
2

3 · 2 =
3

6
+

2

6
=

5

6

Mathematisch gesprochen bildet man den Hauptnenner der beiden zu addierenden Brüche.
Wenn die Nenner der beiden Brüche nicht teilerfremd sind, findet man den Hauptnenner
durch Bilden des kleinsten gemeinsamen Vielfachen, kurz kgV genannt. Die beiden Brüche
werden dann so erweitert, dass im Nenner das kgV aller auftretenden Nenner entsteht, also
der Hauptnenner.
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Analoges ergibt sich für die Subtraktion.
Also gilt allgemein für teilerfremde Nenner:

a

b
± c

d
=

ad

bd
± bc

bd
=

ad± bc

bd

Multiplikation
Zu berechnen ist

2

3
· 4
5

Man kann sich vorstellen: Zuerst wird der dritte Teil von 4
5 berechnet mittels

1

3
· 4
5
=

4

15

Anschließend werden zwei Portionen dieser neuen Stückgröße genommen:

2 · 1
3
· 4
5
=

2 · 4
3 · 5 =

8

15

Die Regel lautet also:

”
Brüche multipliziert man, das weiß der Kenner, Zähler mal Zähler und Nenner mal Nenner.“
Somit gilt allgemein:

a

b
· c
d
=

ac

bd

Division
Gesucht ist

1
2
3
4

Hier gilt die Regel:

”
Man teilt durch einen Bruch, indem man mit dem Kehrwert dieses Bruches malnimmt.“
Daraus folgt

1
2
3
4

=
1

2
· 4
3
=

2

3

und somit allgemein:
a
b
c
d

=
a

b
· d
c
=

ad

bc
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Anschließend fassen wir die Rechenregeln für Brüche noch einmal zusammen:

Rechenregeln für Brüche

Es seien a, b, c, d ∈ IR.
Für b, c 6= 0 gilt:

a

b
=

a · c
b · c (Erweitern)

a

b
=

a : c

b : c
(Kürzen)

Für b, d 6= 0 und b, d teilerfremd gilt:

a

b
± c

d
=

ad

bd
± bc

bd
=

ad± bc

bd
a

b
· c
d

=
ac

bd
a
b
c
d

=
a

b
· d
c
=

ad

bc

Wenn b, d nicht teilerfremd sind, muss bei der Addition und Subtraktion der Hauptnenner
auf andere Weise gebildet werden, da dann bd ein

”
großes gemeinsames Vielfaches“ ist und

nicht das kgV, der Hauptnenner.
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Bilden des kleinsten gemeinsamen Vielfachen (kgV)

Das keinste gemeinsame Vielfache wird an vielen Stellen benötigt, zum Beispiel beim Be-
stimmen des Hauptnenners oder beim Erzeugen geeigneter Koeffizienten zur Lösung linearer
Gleichungssysteme. Daher widmen wir diesem Thema einen gesonderten Abschnitt.

Das keinste gemeinsame Vielfache (kgV) mehrerer Einzelterme ist der einfachste oder auch
kleinste Term, der alle Einzelterme als Faktoren enthält.
Man ermittelt das kgV in drei Schritten:

1. Man faktorisiert die Einzelterme so weit wie möglich und nötig.

2. Man identifiziert diejenigen Faktoren, die in allen Einzeltermen gleichzeitig auftreten,
und übernimmt sie in das kgV.

3. Man überträgt alle weiteren Faktoren in das kgV und prüft dabei, ob einzelne Faktoren
bei einigen Einzeltermen gleichzeitig auftreten, damit keine Doppelungen auftreten.

Wir illustrieren das Vorgehen an einigen Beispielen.

Einzelterme 3 5 7

Faktorisierung 3 5 7

gemeinsame Faktoren –

kgV 3 · 5 · 7 = 105

Einzelterme 9 15 6

Faktorisierung 3 · 3 3 · 5 3 · 2
gemeinsame Faktoren 3

kgV 3 · 3 · 5 · 2 = 90

Einzelterme x2 x3y x2y2z

Faktorisierung x2 x2 · xy x2 · y2 · z
gemeinsame Faktoren x2

kgV x2 · xy2z = x3y2z

Einzelterme x2 + 2xy + y2 x+ y x2 + xy

Faktorisierung (x+ y)2 x+ y x(x+ y)

gemeinsame Faktoren x+ y

kgV (x+ y) · x(x+ y) = x(x+ y)2
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1.3 Modellierung mit Termen

In der Mathematik geht es nicht nur darum, schweigend in der Eremitei vorgegebene Aus-
drücke zusammenzufassen und auszurechnen. Statt dessen ist es sehr wichtig, Terme zu ana-
lysieren und ihre Bedeutung in Worten wiederzugeben.

Die Mathematik stellt ein wichtiges Werkzeug zum Beschreiben und Modellieren von Objek-
ten oder Vorgängen dar. Daher spielt sie eine bedeutende Rolle in sehr vielen Fachdisziplinen,
so z.B. in Physik, Chemie, Informatik, Maschinenbau, Elektrotechnik, Wirtschaft, Tourismus-
management, Medizin, um nur einige zu nennen. Daher muss man genau verstehen, was ein
gegebener Term aussagt und was er bewirkt.
Eine ebenso wichtige Rolle spielt das Verbalisieren von Termen. Nur wenn man die mathe-
matischen Zusammenhänge klar und eindeutig in Worte fassen kann, ist es möglich, sich mit
anderen Menschen zu verständigen und auszutauschen. Die Fachdiskussion bildet eine uner-
setzbare Grundlage jeder Arbeit, und ohne sie ist Weiterentwicklung nicht denkbar.

Daher werden wir uns nun mit einigen Grundlagen zu Typen von Termen, Verbalisieren von
Termen sowie Modellieren mit Hilfe von Termen befassen.

i) Typen von Termen

Abhängig von den durchgeführten Rechenoperationen erfolgt eine Charakterisierung des je-
weiligen Terms.
Werden zwei Terme addiert, handelt es sich um eine Summe.
Werden zwei Terme subtrahiert, handelt es sich um eine Differenz.
Werden zwei Terme multipliziert, handelt es sich um ein Produkt.
Werden zwei Terme dividiert, handelt es sich um einen Quotienten.
Werden zwei Terme potenziert, handelt es sich um eine Potenz.

Solange nur eine Art von Rechenoperation auftritt, ist die Situation einfach. Wie sieht es aber
aus, wenn mehrere verschiedene Operationen innerhalb eines Terms auftreten? In diesem Fall
ergibt sich die Bezeichnung daraus, welche Operation zuletzt ausgeführt wird. Um diese Ope-
ration zu identifizieren, ist nicht die Position innerhalb eines längeren Terms entscheidend,
sondern die Rangfolge der verschiedenen Rechenoperationen.

Typen von Termen
Wird zuletzt addiert, handelt es sich um eine Summe.
Wird zuletzt subtrahiert, handelt es sich um eine Differenz.
Wird zuletzt multipliziert, handelt es sich um ein Produkt.
Wird zuletzt dividiert, handelt es sich um einen Quotienten.
Wird zuletzt potenziert, handelt es sich um eine Potenz.

Beispiele:
Der Term (3− x)(y − 4) ist ein Produkt.
Bei 4xy2 − y2 : 3 handelt es sich um eine Differenz.
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Um welche Art Term es sich handelt, kann man auch gut an den aus der Schule bekannten
Rechenbäumen ablesen. Der Rechenbaum des Terms (3−x)(y−4) beispielsweise hat folgende
Gestalt:

3 x y 4

�
�
�
�
�

A
A
A

A
A

�
�
�
�
�

A
A

A
A
A

– –

������

HHHHHH
·

Diejenige Operation, die an oberster Stelle steht, gibt die Art des Terms an. Da in diesem
Fall dort ein Multiplikationszeichen steht, handelt es sich um ein Produkt.

In der Informatik werden Ihnen Grafen wie der oben dargestellte Rechenbaum häufiger be-
gegnen. Dort bezeichnet man sie als Syntaxbaum.

ii) Verbalisieren von Termen

Wir wollen nun gegebene Terme in Worten wiedergeben, d.h. verbalisieren.
z + 3 bedeutet: eine um 3 vermehrte Zahl
x
4 bedeutet: ein Viertel einer Zahl
y2 + 2y bedeutet: die Summe aus dem Quadrat einer Zahl und dem Doppelten der Zahl
(x + 2)2 + x

5 bedeutet: die Summe aus dem Quadrat der um 2 vermehrten Zahl und dem
Fünftel der Zahl
4z
z+1 bedeutet: der Quotient aus dem Vierfachen der Zahl und der um 1 vergrößerten Zahl
1
2y · (y − 2) bedeutet: das Produkt aus der Hälfte der Zahl und der um 2 verminderten Zahl

In einem zweiten Schritt werden wir nun den umgekehrten Weg gehen und aus der verbalen
Beschreibung den Term konstruieren.
Welcher Term wird durch die folgenden Worte wiedergegeben?
Die Summe aus dem Dreifachen einer Zahl und der um 5 verminderten Zahl

Zur Hilfe werden wir den Satz strukturieren:

Die Summe
︸ ︷︷ ︸

Typ des Terms

aus dem Dreifachen einer Zahl
︸ ︷︷ ︸

Term 1

und der um 5 vermindertenZahl
︸ ︷︷ ︸

Term 2

Was wird getan? Terme werden summiert. Wer wird summiert? Die Terme 1 und 2 werden
summiert. Somit ergibt sich:

3x
︸︷︷︸

Term 1

+
︸︷︷︸

Typ des Terms

(x− 5)
︸ ︷︷ ︸

Term 2
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1.4 Dezimalzahlen, Rechnungen mit der Zahl Null, Bruchteile

1.4.1 Dezimalzahlen

Umwandlung von Brüchen in Dezimalbrüche

Es gibt Dezimalbrüche und Brüche. Hier stellt sich die Frage: Ist es egal, ob man eine Zahl auf
die eine oder auf die andere Art darstellt? Um dies zu beantworten, betrachten wir folgendes
Beispiel:

1

2
= 0.5

Diese Gleichung ist sicher richtig.
In anderen Fällen jedoch ist Vorsicht geboten, besonders bei Einsatz eines CAS (Computeralgebra-
Systems). Zum Beweis betrachten wir die nachstehende Gleichung:

1

3
= 0.333333333

Ist diese Gleichung richtig? Nein, sie ist falsch. Richtig wäre:

1

3
≈ 0.333333333

Die exakte Darstellung von 1
3 lautet nämlich:

1

3
= 0.3

Der (Taschen-)Rechner gibt den Bruch 1
3 als

0.333333333

wieder, aber dies ist nur eine gerundete Zahl und daher eine Folge der endlichen Rechenge-
nauigkeit des Rechners. Identisch, also exakt gleich, sind 1

3 und 0.333333333 nicht, denn es
gilt

0.333333333 = 0.33333333300000 6= 0.3

Daher meldet auch ein CAS:
1

3
6= 0.333333333

Noch deutlicher wird das im Fall von 1
6 . Die exakte Darstellung dieses Bruches als Dezimal-

bruch lautet:
1

6
= 0.16

Der (Taschen-)Rechner behauptet aber:

1

6
= 0.166666667

Das zeigt sehr deutlich:
Im Allgemeinen ist ein Dezimalbruch ungenauer als ein Bruch.
Folglich ist ein Dezimalbruch im Allgemeinen ungleich dem ursprünglichen Bruch.
Daraus folgt die wichtige Regel:

Brüche statt gerundete Dezimalbrüche verwenden!
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An dieser Stelle sei noch kurz etwas zur korrekten Schreibweise von periodischen Dezimal-
brüchen angemerkt. Man schreibt

0.3

und keinesfalls 0.333 oder 0.333 oder andere Varianten. Der Periodenstrich steht immer
über den sich wiederholenden Ziffern bei deren erstem Auftreten, und es wird die kürzeste
Darstellung der Periode verwendet.

Anordnung von Dezimalbrüchen

Als Nächstes betrachten wir die Anordnung von Dezimalbrüchen. Die Zahlen

0.333
1

3
0.3 0.33

2

3

sollen der Größe nach geordnet werden, und zwar beginnend mit der kleinsten. Die korrekte
Anordnung ist:

0.3 0.33 0.333
1

3

2

3

Dies wird deutlicher verständlich, wenn man alle Dezimalzahlen mit drei Stellen nach dem
Komma angibt:

0.300 0.330 0.333
1

3

2

3

Bei 0.3 und 0.33 konnten als letzte Nachkommastellen Nullen angehängt werden, da sich der
Wert der Zahlen dadurch nicht ändert.
An dieser Stelle wird ein wichtiger Unterschied zwischen der reinen Mathematik und den
Ergebnissen von Messungen sichtbar. Mathematisch gesehen gilt 0.300 = 0.3. Bei Messungen
hingegen ist beides nicht gleichbedeutend!
0.3 bedeutet nämlich, dass die Messung bis auf die erste Stelle nach dem Komma genau ist.
0.300 bedeutet aber, dass die Messung bis auf die dritte Stelle nach dem Komma genau ist.

Des Weiteren ist zu beachten, dass ein wichtiger Unterschied in Bezug auf Größenordnungen
zwischen natürlichen Zahlen (also den Zahlen 1, 2, 3, 4, . . . ) und Dezimalbrüchen besteht.
Bei Dezimalbrüchen weist die Anzahl Ziffern einer Zahl nicht automatisch auf die Größe der
Zahl hin. Die Position des Kommas muss unbedingt berücksichtigt werden.
Zur Illustration sollen einige Zahlen dienen, bei denen Anzahl und Art der Ziffern gleich sind,
die Position des Kommas aber jeweils verschieden ist. Gegeben sind:

0.340 3.400 0.034

Geordnet ergibt sich:
0.034 < 0.340 < 3.400

Als weiteres Beispiel sind folgende Zahlen gegeben:

0.034 0.340 0.043 3.004 0.304 0.403 3.400 4.030

Nach Ordnen der Zahlen ergibt sich die Ungleichungskette

0.034 < 0.043 < 0.304 < 0.340 < 0.403 < 3.004 < 3.400 < 4.030
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1.4.2 Rechnungen mit der Zahl Null

Berechnungen mit der Zahl Null werden schon früh in der Schule behandelt. Diese recht ein-
fachen Rechnungen und ihre anschauliche Bedeutung sollen hier noch einmal kurz wiederholt
werden.

6 + 0 = 6 bedeutet anschaulich: Zu 6 EUR kommen 0 EUR hinzu. Somit bleiben es 6 EUR.
6− 0 = 6 bedeutet analog: Von 6 EUR werden 0 EUR ausgegeben. Somit bleiben es 6 EUR.
6 · 0 = 0 bedeutet: Man besitzt null mal 6 EUR, also besitzt man Null EUR.
0
6 = 0 lässt sich ebenfalls verstehen: Man verteilt 0 EUR auf 6 Personen. Dann erhält niemand
etwas. Somit ergibt sich als Ergebnis 0.

Was aber ergibt 6
0? Ergibt sich 6? Oder 0? Oder noch etwas anderes? In der Schule wurde

lediglich oft gesagt
”
Das geht nicht“ oder

”
Durch Null darf man nicht teilen“. In Wahrheit

kann man aber doch eine Aussage über die Größe dieses Quotienten treffen. Zum besseren
Verständnis diskutieren wir zuerst bekannte einfache Divisionen und übertragen dann unsere
Erkenntnisse auf die Division durch Null.

6

3
= 2 bedeutet:

Wie oft kann man 3 addieren bis 6 herauskommt? 2 mal.
Wie oft kann man einer Person drei EUR geben, bis 6 EUR verbraucht sind? 2 mal.
An 3 Personen sollen 6 EUR verteilt werden. Wie oft kann man bei den 3 Personen herum-
gehen und an jede Person 1 EUR verteilen, bis 6 EUR aufgebraucht sind? 2 mal.

6
1
2

= 12 bedeutet:

Wie oft kann man 1
2 addieren bis 6 herauskommt? 12 mal.

Wie oft kann man einer Person 1
2 EUR geben, bis 6 EUR verbraucht sind? 12 mal.

6

0
bedeutet:

Wie oft kann man 0 addieren bis 6 herauskommt? Unendlich oft.
Wie oft kann man einer Person 0 EUR geben, bis 6 EUR verbraucht sind? Unendlich oft.
Wie oft kann man an 0 Personen Geld verteilen, bis es aufgebraucht ist? Unendlich oft.

Wichtig dabei ist:
”
unendlich“ (mathematisches Symbol: ∞) ist keine Zahl, sondern ein

Zahlenbegriff. Man kann mit
”
unendlich“ nicht wie mit der Zahl 5 rechnen.

Und was ist
0

0
?

Der Term 0
0 ist ein unbestimmter Ausdruck und kann jedes Ergebnis besitzen. Näheres dazu

werden Sie in den Mathematikvorlesungen lernen.
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1.4.3 Bruchteile

Dieser letzte Abschnitt des Kapitels geht den Fragen nach, welche Bedeutung Brüche und
Bruchteile haben und wie man Rechnungen mit Brüchen verstehen kann.

Bedeutung von Brüchen

200 EUR sollen an 5 Personen verteilt werden.
Der Bruch

200EUR

5

besagt: 200 EUR werden unter 5 Personen aufgeteilt, man teilt also die Menge von 200 EUR
in 5 gleiche Teile. Es ergibt sich:

200

5
EUR = 40EUR

Nun betrachten wir die Aussage: 20 kg Äpfel kosten 35 EUR.
Daraus kann man zwei Brüche unterschiedlicher Bedeutung gewinnen:

20 kg

35EUR

lässt sich schreiben als
20

35

kg

EUR
=

4

7

kg

EUR

Dieser Bruch besagt: Wieviel kg Äpfel erhält man für 1 EUR? Man erhält 4
7 kg.

Ebenso kann man den Bruch
35EUR

20 kg

aufstellen. Er lässt sich schreiben als

35

20

EUR

kg
=

7

4

EUR

kg
.

Dieser Term gibt an, wieviel EUR man für 1 kg Äpfel aufbringen muss. In diesem Fall sind
das 7

4 EUR.

Schließlich sei noch folgender Bruch betrachtet:

2000 g

500 g

Er beantwortet die Frage: Wieviele Portionen zu 500 g sind in 2000 g enthalten? Wieviele
Portionen zu 500 g lassen sich aus 2000 g herstellen? Hier ergibt sich:

2000 g

500 g
= 4
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Bruchteile und Anteile

Ein interessantes Thema sind auch Bruchteile und Anteile (für mich zumindest – doch hof-
fentlich auch für Sie). Wir beginnen mit folgender Fragestellung:
In einer Flasche befinden sich 750ml Saft. 2

3 davon sind reiner Orangensaft. Wieviel ml sind
das?
Die Lösung wird folgendermaßen bestimmt:

x =
750ml

3
︸ ︷︷ ︸

Portionsgröße

· 2
︸︷︷︸

Anzahl Portionen

=
2

3
· 750ml = 500ml

Zuerst wird die Gesamtmenge durch 3 dividiert, um die Portionsgröße zu ermitteln. Danach
wird diese mit 2 multipliziert, da 2 Portionen gesucht sind. Kurz gesprochen gilt also:

Gesucht sind
2

3
von 750ml ,

d. h. man berechnet
2

3
· 750ml .

Nun gehen wir zu folgender Situation über:
In einer Klasse sind 23 Kinder. 14 Kinder von den 23 Kindern sind Mädchen. Wieviele sind
das? Es sind 14 Kinder. Anders gesprochen lautet das Ergebnis: 14 Kinder von 23 Kindern.

Wichtig zu erkennen ist hier die unterschiedliche Bedeutung des Wortes
”
von“:

Sind 2
3 von 750 ml gesucht, werden die Zahlen multipliziert.

Sind 14 Kinder von 23 Kindern gesucht, gibt bereits die eine Zahl in der Frage die Lösung
an.
Wie findet man aber nun heraus, wie im jeweils vorliegenden Fall vorgegangen werden muss?
Grundlegend wichtig ist natürlich, den Text der Frage genau zu analysieren. Für einfache
Aufgaben, die exakt vom gleichen Typ sind wie die beiden oben genannten Beispiele, hilft
oft diese kleine Faustregel weiter: Besitzt der Bruch im Gegensatz zur anderen Zahl keine
Einheit, muss der Bruchteil durch Multiplikation des Bruches mit der anderen Zahl bestimmt
werden. Besitzen hingegen beide Zahlen die gleiche Einheit oder sind beide einheitenlos, gibt
bereits die eine Zahl aus der Fragestellung das Ergebnis an.
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2 Funktionen

Grundlegend in der Mathematik und allen Disziplinen, die Mathematik verwenden wie z. B.
Physik, Chemie, Informatik, Wirtschaftswissenschaft, Tourismusmanagement, Medizin usw.
ist der Begriff der Funktion.

In der Schule wird der Begriff der Funktion korrekt eingeführt. Jedoch wird dann oft diese
Definition nicht in voller Allgemeinheit begriffen, und in der Folge werden unzulässige Spe-
zialisierungen vorgenommen oder die Funktion mit einer ihrer Repräsentationsformen bzw.
Beschreibungsmöglichkeiten gleichgesetzt. Um eine richtige Basis zu legen und um etwaige
im Laufe der Zeit entstandene Vorurteile zu beseitigen, werden wir uns in diesem Kapitel mit
Funktionen befassen.

Auf eine ausführliche Wiedergabe der Lehrinhalte wird an dieser Stelle bewusst verzichtet.
Statt dessen sei auf die Vorlesung verwiesen.
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3 Lineare Gleichungen und Ungleichungen

3.1 Lineare Gleichungen

3.1.1 Lösen einer linearen Gleichung

Was ist eine lineare Gleichung? Um das zu klären und eindeutig zu definieren, betrachten wir
einige verschiedene Gleichungen. Wir beginnen mit

2(x− 5) +
x

3
+ 7x− 4 = 10

Diese Gleichung ist linear, weil in allen Potenzen der Unbekannten x der Exponent 1 lautet.
Die Gleichung

2(x− 5) +
x

3
+ 7x2 − 4 = 10x3

ist nicht linear, weil neben der Potenz x auch die Potenzen x2 und x3 auftreten.
Auch die Gleichung

2(x− 5) +
3

x
+ 7x− 4 = 10

ist nicht linear, weil die Potenz x1 im Nenner steht und daher x in Wahrheit den Exponenten
-1 besitzt.

Wieviele Lösungen hat eine lineare Gleichung?
Zur Beantwortung dieser Frage untersuchen wir drei unterschiedliche Gleichungen.

1. Fall:
Als Erstes betrachten wir die Gleichung

2x+ 5 = 8x+ 12

Lösen der Gleichung mit Äquivalenzumformungen liefert

2x+ 5 = 8x+ 12 | − 8x− 5

−6x = 7 | : (−6)

x = −7

6

Diese Gleichung besitzt also eine Lösung. In korrekter mathematischer Schreibweise kann
man sie auf folgende Arten angeben:

IL =
{

− 7

6

}

Gesprochen: Die Lösungsmenge besteht aus der Zahl −7
6 .

IL =
{

x ∈ IR |x = −7

6

}

Gesprochen: Die Lösungsmenge ist die Menge aller reellen Zahlen x, für die gilt: x = −7
6 .

IL =
{

x |x ∈ IR , x = −7

6

}

Gesprochen: Die Lösungsmenge ist die Menge aller Zahlen x, für die gilt: x ist eine reelle
Zahl, und es gilt x = −7

6 .
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Besonders wichtig ist, nach dem Ermitteln der Lösung auch eine Probe durchzuführen. Die
Probe ermöglicht es festzustellen, ob das Ergebnis richtig ist oder nicht. Sie fällt also unter
den großen Oberbegriff des Testens. Testen spielt auch in der Informatik eine sehr wichtige
Rolle, denn jedes Programm muss vor seinem Einsatz eingehend getestet werden.
Wir führen nun die Probe für die Lösung der linearen Gleichung durch:

2 ·
(

− 7

6

)

+ 5 = 8 ·
(

− 7

6

)

+ 12

−7

3
+

15

3
= −28

3
+

36

3

−8

3
= −8

3

Die Probe stimmt, also ist das für x ermittelte Ergebnis richtig.

2. Fall:
Nun betrachten wir die Gleichung

2x+ 7 = 2x− 6

Umformen liefert

2x+ 7 = 2x− 6 | − 2x

7 = −6

Dieses Ergebnis ist immer falsch, gleichgültig, welchen Wert x hat. Daher besitzt diese lineare
Gleichung keine Lösung. Mathematisch formal korrekt gibt man dies so an:

IL = { }

Gesprochen: Die Lösungsmenge ist leer. Oder: Die Lösungsmenge ist die leere Menge.

3. Fall:
Als Drittes untersuchen wir die Gleichung

2x+ 4 = 5x+ 3− 3x+ 1

Auflösen nach x ergibt

2x+ 4 = 5x+ 3− 3x+ 1 | zusammenfassen

2x+ 4 = 2x+ 4 | − 2x

4 = 4

Dieses Ergebnis ist immer richtig, ungeachtet des Wertes von x. Somit ist die Gleichung allge-
meingültig. Im Falle einer unendlichen Grundmenge besitzt sie unendlich viele Lösungen.
Wenn die Grundmenge IR ist, gibt man die Lösung folgendermaßen an:

IL = IR

Die Wahl der Grundmenge hat einen entscheidenden Einfluss auf die Lösungsmenge. Wenn
man zum Beispiel beim ersten Fall als Grundmenge statt IR die Menge IN = {1, 2, 3, . . .}
wählt, so folgt aus dem Rechenergebnis x = −7

6 , dass die Lösungsmenge leer ist.
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3.1.2 Gleichungssysteme aus linearen Gleichungen

Es gibt Situationen, in denen mehrere Größen gleichzeitig mehrere Bedingungen erfüllen
müssen. Der Einfachheit halber betrachten wir den Fall, dass an 2 unbekannte Größen 2 Be-
dingungen gestellt werden und sich aus ihnen jeweils eine lineare Gleichung ergibt.
Beispiel: Das Energieversorgungsunternehmen bietet für Strom zwei Tarife an, von denen
jeweils die Grundgebühr und der Arbeitspreis bekannt sind. Die Variablen sind der Ver-
brauch und die entstehenden Kosten. Gesucht ist nun derjenige Verbrauch, bei dem beide
Tarife die gleichen Kosten verursachen. Daraus kann man dann ermitteln, welcher der beiden
Tarife für den eigenen Haushalt am günstigsten ist. Ein Blick auf die Tarifstruktur Ihres
Energieversorgungsunternehmens oder anderer Anbieter zeigt sofort, dass Rechnen hier sehr
empfehlenswert ist.

Um das Lösen von zwei linearen Gleichungen mit zwei Unbekannten zu erläutern, betrachten
wir ein wesentlich einfacheres Beispiel. Nehmen wir an, Sie wollen eine Fete feiern und kaufen
als Getränke Säfte ein. Im Supermarkt werden nur gemischte Kisten angeboten: Eine Kiste
mit 6 Flaschen Organgensaft und 6 Flaschen Apfelsaft kostet 10 EUR, und eine Kiste mit 4
Flaschen Organgensaft und 8 Flaschen Apfelsaft kostet 12 EUR. Sind die Preis für die beiden
Saftsorten akzeptabel, besonders günstig oder zu hoch?
Die Beantwortung dieser Frage erfordert das Lösen von zwei linearen Gleichungen. Die Unbe-
kannten sind dabei der Preis für eine Flasche Orangensaft xO und der Preis für eine Flasche
Apfelsaft xA. Somit gilt:

6xO + 6xA = 10

4xO + 8xA = 12

Diese Gleichungen lassen sich durch geschickte Division vereinfachen:

6xO + 6xA = 10 | : 2
4xO + 8xA = 12 | : 4

Gleichzeitiges Nummerieren der Gleichungen liefert

I 3xO + 3xA = 5

II xO + 2xA = 3

II nach xO auflösen führt auf
xO = 3− 2xA

Einsetzen dieses Terms für xO in I ergibt

3(3 − 2xA) + 3xA = 5

9− 6xA + 3xA = 5

−3xA = −4

xA =
4

3

Dieser Wert wird nun in die Gleichung für xO eingesetzt:

xO = 3− 2 · 4
3

xO =
1

3
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Der Orangensaft kostet also rund 33 Ct (das scheint eine Billigsorte zu sein) und der Apfelsaft
1.33 EUR (dies ist ein guter Saft).

Die korrekte Angabe der Lösungsmenge ist auf zwei Arten möglich:

IL =
{(4

3
;
1

3

)}

Gesprochen: Die Lösungsmege besteht aus dem Wertepaar (43 ;
1
3).

IL =
{

xA, xO ∈ IR |xA =
4

3
, xO =

1

3

}

Gesprochen: Die Lösungsmenge ist die Menge aller reellen Zahlen xA und xO, für die gilt:
xA = 4

3 und xO = 1
3 .

Auch hier muss wieder eine Probe durchgführt werden. Dazu setzt man beide Werte in jede
der Ausgangsgleichungen ein.

Der Weg, den wir hier zur Lösung des Gleichungssystems beschritten haben, ist nicht der
einzig mögliche. Statt dessen kann man ein lineares Gleichungssystem aus zwei Gleichungen
und zwei Unbekannten auf drei unterschiedlichen Wegen lösen. Welchen dieser Wege man
wählt, folgt daraus, welcher Weg im vorliegenden Fall am günstigsten ist.
Wir werden nun die drei Lösungswege durchgehen und gleichzeitg untersuchen, wieviele
Lösungen ein lineares Gleichungssystem aus zwei Gleichungen und zwei Unbekannten ha-
ben kann.

1. Lösungsmethode

Das Gleichungssystem lautet:

I − 4x+ 6y = −3

II x = −2y + 6

Da die zweite Gleichung bereits nach x aufgelöst ist, kann man diesen Term für x in der
ersten Gleichung einsetzen. Das liefert:

−4(−2y + 6) + 6y = −3

8y − 24 + 6y = −3

14y = 21

y =
3

2

Nach Einsetzen dieses Wertes für x in II folgt:

x = −2 ·
(3

2

)

+ 6

x = 3

Dieses Gleichungssystem besitzt also eine eindeutige Lösung:

IL =
{(

3;
3

2

)}
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Die Probe wird hier der Einfachheit halber nicht notiert, muss aber unbedingt durchgeführt
werden.

2. Lösungsmethode

Nun betrachten wir folgendes Gleichungssystem:

I 2y = −4 + 3x

II 2y = 2 + 3x

Da beide Gleichungen nach dem gleichen, eine Unbekannte enthaltenden Term aufgelöst sind,
kann man die rechten Seiten gleichsetzen. Das ergibt

−4 + 3x = 2 + 3x | − 3x

−4 = 2

Unabhängig von x und y ergibt sich also ein falsches Ergebnis. Das Gleichungssystem besitzt
somit keine Lösung. Mathematisch gibt man das wie folgt an:

IL = { }

3. Lösungsmethode

Als Letztes untersuchen wir dieses Gleichungssystem:

I 4x+ 2y = 3

II − 28x− 14y = −21

Diesmal ist keine der beiden Gleichungen nach einer Unbekannten oder einem eine Unbekann-
te enthaltenden Term aufgelöst. Daher multipliziert man die Gleichungen geeignet mit Zahlen
und kann anschließend die Gleichungen addieren, um eine Unbekannte zu eliminieren.
Im vorliegenden Fall wird die zweite Gleichung mit −1

7 multpliziert. Das führt auf zwei iden-
tische Gleichungen:

I′ 4x+ 2y = 3

II′ 4x+ 2y = 3

Subtraktion der beiden Gleichungen liefert

0 = 0

Dieses Ergebnis ist unabhängig von denWerten von x und y immer richtig. Somit hat das Glei-
chungssystem unendlich viele Lösungen, die als Nebenbedingung die Gleichung 4x + 2y = 3
erfüllen müssen. Die Lösungsmenge lautet daher:

IL = {x, y ∈ IR | 4x+ 2y = 3} = {x, y ∈ IR | y = −2x+
3

2
}
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Zum Schluss soll noch kurz ein Gleichungssystem aus drei linearen Gleichungen und drei
Unbekannten betrachtet werden. Gegeben sei

I x1 + 2x2 + x3 = 2

II 4x1 − x2 + 2x3 = 16

III − x1 + x2 − 2x3 = −13

Wir eliminieren nun die Unbekannte x1. Wie die Gleichungen I, II und III dabei kombiniert
wurden, ist den sich ergebenden neuen Gleichungen vorangestellt; die Nummer der neuen
Gleichung folgt am Schluss.

−4I + II − 9x2 − 2x3 = 8 IV

I + III 3x2 − x3 = −11 V

Nun wird x2 eliminert.

IV + 3V − 5x3 = −25

x3 = 5

Der Wert von x3 wird in V eingesetzt:

3x2 − 5 = −11

3x2 = −6

x2 = −2

Einsetzen von x2 und x3 in I liefert:

x1 + 2 · (−2) + 5 = 2

x1 − 4 + 5 = 2

x1 = 1

Für die Probe müssen dann die Werte von x1, x2 und x3 in alle drei Ausgangsgleichungen
eingesetzt werden.

Im 2. Semester wird in der Vorlesung
”
Mathematik für die Informatik“ in der Linearen Alge-

bra ein Verfahren behandelt, das schematisierbar ist und sich daher gut als ein Algorithmus
programmieren lässt, das sogenannte Gaußsche Eliminationsverfahren.

Lineare Gleichungen mit mehreren Unbekannten sind sehr wichtig, da man in der Realität
oft Probleme behandeln muss, die auf derartige Gleichungssysteme führen. An dieser Stelle
seien zwei Beispiele genannt:
1.) Computertomografie:
Für jede Strahlungsrichtung ergibt sich eine Gleichung, und die Dichten kleiner Volumen-
elemente des Körpers sind die Unbekannten. Hier hat man größenordnungsmäßig mit 20000
Gleichungen und Unbekannten zu tun.
2.) Chemische Industrie:
Die Substanzen und deren Konzentrationen bei chemischen Prozessen werden durch lineare
Gleichungssysteme beschrieben.
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3.1.3 Grafische Darstellung

i) Eine lineare Gleichung

Bisher haben wir lineare Gleichungen nur algebraisch betrachtet und daher untersucht, wie
sich eine einzelne lineare Gleichung oder ein System aus mehreren linearen Gleichungen lösen
lässt. Man kann eine lineare Gleichung aber auch grafisch interpretieren. Besonders einfach
ist dies bei einer linearen Gleichung mit zwei Unbekannten. Als Beispiel diene die Gleichung

2x− 3y = 0 .

Um die Gleichung grafisch zu veranschaulichen, löst man sie nach y auf und erhält

y =
2

3
x

Jedem Wert von x wird ein zweiter Wert y zugeordnet, der mittels des Terms 2
3x eindeutig

bestimmt wird. Somit handelt es sich um eine Funktion:

f1(x) =
2

3
x

Trägt man alle Punkte mit den Koordinaten (x/f1(x)) in ein Koordinatensystem ein, so
erhält man eine Gerade, die durch den Ursprung läuft (Abbildung 1).

Abbildung 1: Graf der Geraden f1(x) =
2
3x

Was geschieht, wenn man eine Konstante zu dem Term auf der rechten Seite der Gleichung
addiert?

f2(x) =
2

3
x+ 1

Jedem Wert von x wird nun eine Zahl zugeordnet, die um 1 größer ist als diejenige Zahl, die
die Funktion f1 zuordnet. Infolgedessen ist der Graf von f2 gegenüber dem Grafen von f1 in
y-Richtung um +1 verschoben. Die Gerade

f3(x) =
2

3
x− 2
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hingegen ist gegenüber f1 in y-Richtung um −2 verschoben.
Die additive Konstante gibt also an, wo die Gerade die Ordinate schneidet und wird daher
als Ordinatenabschnitt bezeichnet. Abbildung 2 zeigt die Grafen der Geraden f1, f2 und f3.

Abbildung 2: Geraden mit unterschiedlichem Ordinatenabschnitt: f1 blau, f2 rot, f3 grün

Ein anderer Effekt ergibt sich, wenn man den Vorfaktor von x verändert. Er bestimmt, in
welchem Maße sich eine Änderung von x auf den Funktionswert (y-Wert) überträgt.
Für die Funktion

f1(x) =
2

3
x

gilt: Nimmt x um 1 zu, wächst y um 2
3 . Nimmt x um 3 zu, wächst y um 2. Die Veränderung

der y-Werte relativ zu der Veränderung der x-Werte wird somit durch den Vorfaktor von x
beschrieben, in diesem Fall 2

3 .
Bei der Funktion

f4(x) = 4x

nimmt f4(x) viel stärker in Abhängigkeit von x zu als f1(x), so dass die entstehende Gerade
deutlich steiler ist. Da die Funktionswerte im Falle positiver Vorfaktoren von x mit wach-
sendem x zunehmen, ergeben sich steigende Geraden. Ist der Vorfaktor negativ, nehmen die
Funktionswerte mit wachsendem x ab. Dies ist bei der Geraden f5(x) der Fall:

f5(x) = −1

2
x

Bei ihr erfolgt die Abnahme nur schwach, bei

f6(x) = −5

4
x

hingegen deutlich stärker. Die entsprechenden Geraden sind fallend.
Der Koeffizient von x macht also eine Aussage über die Steigung einer Geraden. Abbildung
3 zeigt die genannten Geraden mit unterschiedlicher Steigung.
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Abbildung 3: Geraden mit unterschiedlicher Steigung: f1 blau, f4 rot, f5 grün, f6 violett

Allgemein gilt also:
Eine lineare Funktion wird beschrieben durch

f(x) = mx+ b mit m, b Konstanten.

Der zugehörige Graf ist eine Gerade. Die Konstante b gibt dabei an, wo der Graf die y-Achse
schneidet und wird als Ordinatenabschnitt bezeichnet. Die Zahl m ist die Steigung der Ge-
raden.

Mit Hilfe von m und b lässt sich eine Gerade sehr schnell zeichnen:
Der Punkt (0/b) wird auf der Ordinate markiert. Anschließend wird die Steigung m als
Bruch geschrieben. Beginnend bei dem Punkt (0/b) geht man dann um so viele Einheiten
nach rechts, wie die Zahl im Nenner angibt, und danach um so viele Einheiten in y-Richtung,
wie es der Zahl im Zähler entspricht, und zwar bei positivem Zähler nach oben und bei ne-
gativem nach unten. So gewinnt man einen zweiten Punkt. Durch ihn und den Punkt (0/b)
ist die Gerade eindeutig bestimmt.

Umgekehrt lässt sich auch sehr leicht mit Hilfe des gegebenen Grafen einer Geraden der zu-
gehörige Funktionsterm aufstellen, indem man b und m abliest.

ii) Zwei lineare Gleichungen

Wir haben nun das Handwerkszeug, um auch die Lösung eines Systems aus zwei linearen
Gleichungen mit zwei Unbekannten grafisch zu interpretieren.
Da es sich um lineare Gleichungen mit 2 Unbekannten handelt, stellen die einzelnen Glei-
chungen Geraden dar.
Somit ist die Suche nach der Lösung eines Gleichungssystems aus 2 linearen Gleichungen
mit 2 Unbekannten äquivalent zu der Frage, welche gemeinsamen Punkte der beiden Gera-
den existieren, denn die Lösung (x, y) des Gleichungssystems lässt sich als Punkt mit den
Koordinaten x und y auffassen.
Zur Erläuterung greifen wir die drei Beispiele aus dem letzten Abschnitt wieder auf.
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1. Fall
Gegeben waren

−4x+ 6y = −3

x = −2y + 6

Auflösen jeder Gleichung nach y liefert

y =
2

3
x− 1

2

y = −1

2
x+ 3

Die sich ergebenden Geraden besitzen unterschiedliche Steigungen und unterschiedliche Or-
dinatenabschnitte. Daher muss es einen Schnittpunkt geben. Abbildung 4 bestätigt diese
Überlegung. Man liest als Lösung den Schnittpunkt P (3/1.5) ab.

Abbildung 4: Lineares Gleichungssystem aus 2 Gleichungen und 2 Unbekannten mit einer
Lösung: I −4x+ 6y = −3 (blau), II x = −2y + 6 (rot)

2. Fall:
Diesmal lautete das Gleichungssystem

2y = −4 + 3x

2y = 2 + 3x

Auflösen nach y ergibt

y =
3

2
x− 2

y =
3

2
x+ 1

Diese beiden Geraden besitzen dieselbe Steigung, aber unterschiedliche Ordinatenabschnitte.
Folglich sind sie parallel und besitzen keine gemeinsamen Punkte. Abbildung 5 bestätigt dies
Ergebnis. Man erkennt als Lösungsmenge IL = { }.
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Abbildung 5: Lineares Gleichungssystem aus 2 Gleichungen und 2 Unbekannten mit keiner
Lösung: I 2y = −4 + 3x (blau), II 2y = 2 + 3x (rot)

3. Fall:
Das dritte Gleichungssystem schließlich lautete

4x+ 2y = 3

−28x− 14y = −21

Löst man beide Gleichungen nach y auf, erhält man zwei identische Geraden:

y = −2x+
3

2

y = −2x+
3

2

Sie besitzen unendlich viele gemeinsame Punkte. Abbildung 6 gibt das Resultat noch einmal
grafisch wieder.

27



Abbildung 6: Lineares Gleichungssystem aus 2 Gleichungen und 2 Unbekannten mit unendlich
vielen Lösungen: I 4x+ 2y = 3, II −28x− 14y = −21, beide blau dargestellt

3.2 Lineare Ungleichungen

Bisher haben wir uns in diesem Kapitel mit linearen Gleichungen befasst. Es gibt aber viele
Fragestellungen, zu deren Beantwortung eine Ungleichung gelöst werden muss. Die folgenden
Beispiele von Problemstellungen verdeutlichen das:

- Wie viele Artikel müssen mindestens produziert werden, damit der Gewinn größer als
ein vorgegebener Betrag ist?

- Ab welchem Stromverbrauch sind die Stromkosten bei Tarif 1 größer als diejenigen, die
sich bei Tarif 2 ergeben?

- Bis zu welcher Wassertiefe liegt der Wasserdruck unterhalb des Wertes, für den dieser
Tauchanzug/diese Sonde/dieses U-Boot zugelassen ist?

- Ab welcher Masse wird ein Stern am Ende seines Lebens zu einem Schwarzen Loch?

- Bei welchen Prozessorleistungen bleibt die Betriebstemperatur unterhalb eines vorge-
gebenen Schwellwertes?

Wir werden im Rahmen des Vorkurses zwar keines der beschriebenen Anwendungsprobleme
lösen. Aber wir werden behandeln, wie man einfache Ungleichungen löst und wie man die
Lösung grafisch veranschaulicht.

3.2.1 Grundlagen und Äquivalenzumformungen

Grundlagen

In diesem Abschnitt werden wir uns damit befassen, welche Arten von linearen Ungleichun-
gen es gibt und wie jeweils die Lösung aussieht.
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Eine sehr einfache Ungleichung ist

x > 2 , x ∈ IR .

Die Lösungsmenge dieser Ungleichung wird in Abbildung 7 veranschaulicht.

Abbildung 7: Grafische Darstellung der Ungleichung x > 2

Beachten Sie dabei: Die Zahl 2 ist kein Element der Lösungsmenge. Daher wurde diese Zahl
auf der reellen Zahlengerade nicht rot markiert.

Etwas anders sieht es bei der folgenden Ungleichung aus:

x ≤ 2 , x ∈ IR .

Hier gehört die Zahl 2 zur Lösungsmenge, denn es steht ≤ statt < in der Ungleichung. Das
zeigt auch Abbildung 8.

Abbildung 8: Grafische Darstellung der Ungleichung x ≤ 2
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Beide Fälle können auch kombiniert auftreten. Ein Beispiel dafür ist die Ungleichung

1 ≤ x < 3 , x ∈ IR .

Hier lautet die Lösungsmenge:

IL = {x ∈ IR | 1 ≤ x < 3}

In Abbildung 9 ist wieder die Lösungsmenge veranschaulicht.

Abbildung 9: Grafische Darstellung der Ungleichung 1 ≤ x < 3 , x ∈ IR

Die Situation ändert sich grundlegend, wenn bei dieser Ungleichung nicht x ∈ IR gilt, sondern
x ∈ IN. In diesem Fall reduziert sich die Lösungsmenge auf

IL = {x ∈ IN | 1 ≤ x < 3} = {1; 2} .

Die folgende Abbildung 10 stellt diese Lösung auf der reellen Zahlengerade dar.

Abbildung 10: Grafische Darstellung der Ungleichung 1 ≤ x < 3 , x ∈ IN
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Die Lösungsmenge einer Ungleichung kann also aus unendlich vielen Zahlen (abzählbar oder
nicht abzählbar vielen) oder endlich vielen Zahlen bestehen, oder sie kann leer sein. Eine leere
Lösungsmenge ergibt sich beispielsweise im Falle der Ungleichung 3 < x < 4 , x ∈ IN.

Um weitere interessante Eigenschaften von Ungleichungen zu untersuchen, betrachten wir
einmal die reelle Zahlengerade (in Abbildung 11 blau dargestellt):

Abbildung 11: Zahlengerade

Wir wissen, dass gilt:
1 < 2

Anschaulich heißt das: 1 EUR ist weniger als 2 EUR.
Im Falle negativer Zahlen gilt aber:

−1 > −2

Anschaulich heißt das: 1 EUR Schulden stellen ein größeres Guthaben dar als 2 EUR Schul-
den.
Ändert man also auf beiden Seiten der Ungleichung das Vorzeichen, so muss das Ungleichungs-
zeichen umgedreht werden. Der Grund dafür ist, dass die Zahlen auf der reellen Zahlengeraden
in Bezug auf ihre Beträge links und rechts der Null in umgekehrter Reihenfolge angeordnet
sind.

Was passiert, wenn man den Kehrwert einer Zahl bildet?
Es gilt:

2 < 3

Daher folgt für die Kehrwerte:
1

2
>

1

3

Das Ungleichungszeichen wird also umgedreht.
Entsprechend gilt:

−2 > −3

Folglich ergibt sich für die Kehrwerte:

−1

2
< −1

3
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Auch wenn beide Seiten der Ungleichung negativ sind, kehrt sich demnach das Ungleichungs-
zeichen um.

Anders sieht es aus, wenn die beiden Seiten der Ungleichung unterschiedliche Vorzeichen
besitzen.
Aus

−2 < 3

folgt:

−1

2
<

1

3

Denn: Eine negative Zahl ist immer kleiner als eine positive Zahl.

Unsere Erkenntnisse lassen sich also folgendermaßen zusammenfassen:

Relation positiver und negativer Zahlen
Auf der reellen Zahlengeraden nehmen die Zahlen von links nach rechts zu.
Links und rechts der Null sind die Zahlen in Bezug auf ihre Beträge in entgegengesetzter
Reihenfolge angeordnet.
Für positive Zahlen gilt: Die Zahl mit größerem Betrag ist größer als die Zahl mit kleinerem
Betrag.
Für negative Zahlen gilt: Die Zahl mit größerem Betrag ist kleiner als die Zahl mit kleinerem
Betrag.

Äquivalenzumformungen

Betrachten wir die folgende Ungleichung:

1 < 2

Addiert man auf beiden Seiten die Zahl 4, so bleibt die Ungleichung erhalten:

5 < 6

Das lässt sich auch leicht anschaulich verstehen: Wenn Fritz größer als Erna ist, so bleibt diese
Relation erhalten, wenn beide auf zwei gleich hohe Stühle steigen und so zu ihrer Körpergröße
jeweils die gleiche Stuhlhöhe hinzukommt. Misst man nämlich dann ihre Scheitelhöhe, so er-
gibt sich die gleiche Differenz wie vorher.
Das Entsprechende gilt für die Subtraktion.

Wie sieht es bei der Multiplikation aus?
Erinnern wir uns, was wir über die Anordnung der Zahlen gelernt haben:
Aus

1 < 2

folgt
−1 > −2 .

Um von der ersten zur zweiten Zeile zu gelangen, hat man im Grunde die gesamte Unglei-
chung mit (−1) multipliziert. Das bedeutet: Durch die Multiplikation mit einer negativen
Zahl ändert sich die Relation zwischen zwei Zahlen. Würde man die Gleichung mit einer po-
sitiven Zahl multiplizieren, blieben die Vorzeichen der beiden Seiten der Ungleichung erhalten
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und somit auch die Relation der beiden Seiten sowie das Ungleichungszeichen.

Beispiel:
Zuerst multiplizieren wir die Ungleichung mit einer negativen Zahl:

4 < 5 | · (−2)

−8 > −10

Demgegenüber ergibt die Multiplikation mit einer positiven Zahl:

4 < 5 | · 3
12 < 15

Das Entsprechende gilt, wenn durch eine negative Zahl dividiert wird, denn die Division durch
eine Zahl ist äquivalent zur Multiplikation mit dem Kehrwert der Zahl.

Beispiel 1: Es gilt:

4x− 2 < x+ 7 |+ 2

4x < x+ 9 | − x

3x < 9 | : 3
x < 3

Beispiel 2: Hier aber gilt:

−4x− 2 < −x+ 7 |+ 2

−4x < −x+ 9 |+ x

−3x < 9 | : (−3)

x > −3

Das Gelernte lässt sich in einem Merksatz zusammenfassen:

Multiplikation und Division bei Ungleichungen
Multipliziert man eine Ungleichung mit einer negativen Zahl oder dividiert man durch eine
negative Zahl, so muss das Ungleichungszeichen umgedreht werden.

Wie gibt man die Lösungsmenge einer linearen Ungleichung mathematisch korrekt an?
Im Fall von Beispiel 1 schreibt man:

IL = {x ∈ IR |x < 3}

Gelesen wird dies folgendermaßen:
”
Die Lösungsmenge ist gleich der Menge aller reellen Zah-

len x (oder kurz: ist gleich der Menge aller x Element IR), für die gilt: x ist kleiner als 3.“
Für Beispiel 2 gibt man die Lösungsmenge so an:

IL = {x ∈ IR |x > −3}
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Beispiel 3: Wir lösen nun eine etwas längere Ungleichung.

(4x− 3)(2x − 1) < 8x2 + 13

8x2 − 4x− 6x+ 3 < 8x2 + 13 | − 8x2 − 3

−10x < 10 | : (−10)

x > −1

IL = {x ∈ IR |x > −1}
Beispiel 4: In der Praxis muss man die Ungleichung erst aus einem verbal formulierten
Problem herleiten. Zum Üben lösen wir daher das folgende Zahlenrätsel:
Wenn man eine Zahl mit 2 multipliziert und anschließend 8 addiert, so erhält man mehr als
wenn man die Summe aus der Zahl und 5 durch 2 dividiert.

2x+ 8 >
x+ 5

2
| · 2

4x+ 16 > x+ 5 | − x− 16

3x > −11 | : 3

x > −11

3

IL =
{

x ∈ IR |x > −11

3

}

3.2.2 Ungleichungen mit Parametern

Bisher traten in den Gleichungen und Ungleichungen nur Zahlen und die gesuchte Unbe-
kannte auf. Es ist aber auch möglich, dass zusätzlich ein weiterer Platzhalter auftritt. Für
ihn können ebenfalls verschiedene Zahlen eingesetzt werden, so dass die Lösungsmenge der
(Un)gleichung von seinem Wert anhängt. Beim Lösen der (Un)gleichung wird er dennoch wie
eine feste Zahl behandelt. Einen solchen Platzhalter bezeichnet man als Parameter (Ausspra-
che: Betonung auf der zweiten Silbe).
Da der Parameter viele verschiedene Werte annehmen kann, muss bei Berechnungen acht-
gegeben werden, ob spezielle Werte besondere Auswirkungen haben. Ein Problem kann zum
Beispiel auftreten, wenn man durch einen Term dividiert, der den Parameter enthält, und
dieser Term für einen bestimmten Parameterwert Null werden kann. Dieser Fall muss dann
ausgeschlossen und gesondert behandelt werden.
Beim Lösen von Gleichungen ist dies der einzige Fall, der eine Fallunterscheidung notwendig
macht. Bei Ungleichungen hingegen kann sich auch das Vorzeichen des Terms mit Parameter
auswirken.
Um dies besser zu verstehen, beginnen wir mit einem einfachen Beispiel. Gegeben sei

a > 0 .

Gilt diese Ungleichung immer? Ist sie für alle Werte des Parameters a richtig? Nein, die
Ungleichung gilt nur, wenn a positiv ist. Sobald a negativ ist, ist die Ungleichung falsch.
Betrachten wir nun folgende Ungleichung:

−b > 0

Wann ist sie erfüllt? Sie wird nur von negativen Werten von b erfüllt.
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Nun können wir eine Ungleichung lösen, die eine Unbekannte und einen Parameter enthält.
Gegeben sei

ax < 2 , a ∈ IR .

Da man zur Lösung der Ungleichung durch a dividieren muss, müssen nun abhängig von a
drei Fälle unterschieden werden.

1. Fall: a = 0
Hier wird gar nicht durch a dividiert, sondern direkt die gegebene Ungleichung betrachtet.
Es ergibt sich:

0 < 2

Das ist immer richtig, also gilt:
IL = IR

2. Fall: a > 0
In diesem Fall kann man durch a dividieren, ohne das Ungleichungszeichen umzudrehen.
Somit ergibt sich:

x <
2

a

Die Lösungsmenge muss nun wie folgt angegeben werden:

IL =
{

x ∈ IR |x <
2

a
, a > 0 , a ∈ IR

}

3. Fall: a < 0
Nun muss man bei Division durch a das Ungleichungszeichen umdrehen. Das liefert:

x >
2

a

Die Lösungsmenge lautet daher:

IL =
{

x ∈ IR |x >
2

a
, a < 0 , a ∈ IR

}

Zur besseren Übung betrachten wir noch ein weiteres Beispiel:

4 + a(x+ 3) < −7 , a ∈ IR

Subtraktion von 4 liefert
a(x+ 3) < −11

1. Fall: a = 0
Daraus folgt

0 < −11

Also:
IL = { }

2. Fall: a > 0
Dann gilt:

x+ 3 < −11

a

x < −11

a
− 3
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Also:

IL =
{

x ∈ IR |x < −11

a
− 3 , a > 0 , a ∈ IR

}

3. Fall: a < 0
Daraus folgt:

x+ 3 > −11

a

x > −11

a
− 3

Also:

IL =
{

x ∈ IR |x > −11

a
− 3 , a < 0 , a ∈ IR

}

Beim Lösen von Ungleichungen werden also oft Fallunterscheidungen notwendig. Zu erken-
nen, wann Fallunterscheidungen notwendig sind, und diese anschließend auch korrekt durch-
zuführen ist in vielen Fachgebieten notwendig. In der Informatik zum Beispiel muss man oft
so vorgehen, um Fragen wie die folgenden zu beantworten: Wann tritt welcher Fall in einem
Programm auf? Wann wird welcher Programmteil durchlaufen? In der Elektrotechnik werden
abhängig davon, ob Ströme bzw. Spannungen groß oder klein sind, die Zusammenhänge der
betrachteten Größen durch andere Terme beschrieben. Vergleichbare Situationen treten auch
im Maschinenbau, der Physik und anderen Fachgebieten auf.

3.2.3 Lineare Ungleichungen mit zwei Unbekannten

i) Eine Ungleichung

Die Situation zweier Unbekannter kennen wir bereits von den linearen Gleichungen. Ein
Beispiel ist etwa die folgende Gleichung:

2x+ y = 1

Die Variablen x und y sind hier die beiden Unbekannten. Diese Gleichung besitzt unendlich
viele Lösungen, wobei x und y nicht unabhängig voneinander sind, sondern die oben genannte
Bedingung erfüllen müssen. Um die Struktur der Lösungsmenge leichter verstehen und um
sie besser grafisch veranschaulichen zu können, löst man die Gleichung oft nach y auf und
erhält so:

y = −2x+ 1

Offensichtlich handelt es sich hier um die Gleichung einer linearen Funktion mit x als abhän-
giger und y als unabhängiger Variable. Die so beschriebene Gerade besitzt die Steigung -2
und schneidet die Ordinate im Punkt (0/1). In Abbildung 12 ist der Graph dieser Geraden
schwarz dargestellt.
Die Situation ändert sich grundlegend, wenn man die Ungleichung

y < −2x+ 1

betrachtet. Um die Eigenschaften der Lösungsmenge besser zu verstehen, betrachten wir
zuerst die Lösung der Gleichung y = −2x + 1. Die Koordinaten des Punktes P (−1/3) bei-
spielsweise erfüllen die Gleichung, P liegt somit auf der Geraden. In Abbildung 12 ist die
Lage von P auf der Geraden durch ein blaues Kreuz markiert.
Soll aber y kleiner als der Wert des Terms −2x + 1 sein, so ist die zweite Koordinate y
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Abbildung 12: Lösungsmenge einer Ungleichung mit zwei Unbekannten

des Punktes kleiner als die zweite Koordinate desjenigen Punktes, welcher die gleiche x-
Koordinate besitzt, aber auf der Geraden liegt. Somit liegen alle Punkte, deren erste Koor-
dinate x den Wert -1 hat und deren zweite Koordinate y die Bedingung y < −2x+ 1 erfüllt,
unterhalb von P . In Abbildung 12 kennzeichnen die blauen Kreuze unterhalb von P die Lage
mehrerer Punkte mit dieser Eigenschaft. Für alle anderen Werte der Koordinate x gilt das
Analoge, so dass sich als Lösungsmmenge der Ungleichung der gesamte rot gepunktete Be-
reich unterhalb der Geraden ergibt.
Betrachtet man nun die Ungleichung

y > −2x+ 1 ,

so ergibt sich ganz entsprechend als Lösungsmenge die gesamte Fläche oberhalb der Geraden.

Wir können also drei Fälle unterscheiden:

1. Fall: y = −2x+ 1 oder 2x+ y = 1
Lösungsmenge: Punkte auf der Geraden

2. Fall: y < −2x+ 1 oder 2x+ y < 1
Lösungsmenge: Punkte unterhalb der Geraden

3. Fall: y > −2x+ 1 oder 2x+ y > 1
Lösungsmenge: Punkte oberhalb der Geraden

Sollen sowohl Punkte außerhalb der Geraden als auch auf der Geraden zur Lösungsmenge
gehören, steht in der Ungleichung ≤ oder ≥. Die Ungleichung

2x+ y ≤ 1 oder y ≤ −2x+ 1
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beispielsweise besitzt als Lösungsmenge alle Punkte, die unterhalb oder auf der Geraden
y = −2x+ 1 liegen. Abbildung 13 verdeutlicht diesen Sachverhalt.

Abbildung 13: Lösungsmenge der Ungleichung y ≤ −2x+ 1

ii) Zwei Ungleichungen

In Anwendungen müssen oft mehrere Bedingungen kombiniert werden. Daher befassen wir
uns nun in einem ersten Schritt mit einem System aus zwei linearen Ungleichungen. Die
Lösungspaare (x/y) müssen nun immer gleichzeitig beide Ungleichungen erfüllen.
Als Beispiel betrachten wir folgende zwei Ungleichungen:

I 3x− 2y < 6

II 4x+ y ≤ 2

Um die Lösung wie im Fall einer einzelnen Ungleichung grafisch ermitteln zu können, lösen
wir beide Ungleichungen nach y auf und erhalten

I y >
3

2
x− 3

II y ≤ −4x+ 2

Das bedeutet: Zur Lösungsmenge gehören diejenigen Punkte, die sowohl oberhalb der Gera-
den y = 3

2x− 3 liegen als auch unterhalb oder auf der Geraden y = −4x+ 2. Folglich ergibt
sich der in Abbildung 14 rot markierte Bereich.
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Abbildung 14: Lösungsmenge eines Systems aus zwei linearen Ungleichungen

iii) Mehr als zwei Ungleichungen

Zum Abschluss soll noch ein System aus vier Ungleichungen betrachtet werden.
Folgende vier Ungleichungen seien gegeben:

I
1

4
x+

1

2
y > 1

II − 2x+ 3y ≤ 6

III x ≤ 4

IV y ≥ 1

Zum grafischen Ermitteln der Lösung lösen wir die ersten beiden Ungleichungen wieder nach
y auf und erhalten:

I y > −1

2
x+ 2

II y ≤ 2

3
x+ 2

III x ≤ 4

IV y ≥ 1

Die sich ergebende Lösungsmenge ist in Abbildung 15 rot gekennzeichnet.

Ungleichungssysteme dieser Art können angewendet werden, um auf grafischem Weg Pro-
bleme zur linearen Optimierung zu lösen. Worum geht es dabei? Nehmen wir an, ein Chip-
hersteller produziert mit zwei Maschinen Chips. Die erste Maschine produziert x Stück pro
Stunde und die zweite y. Aus den Eigenschaften der Maschinen, der Anzahl Angestellten
und anderem ergeben sich dann Ungleichungen der Typen I und II. Da es keine negativen
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Abbildung 15: Lösungsmenge eines Systems aus vier linearen Ungleichungen

Stückzahlen geben kann, müssen die Ungleichungen x ≥ 0 und y ≥ 0 erfüllt werden (Un-
gleichungen des Typs IV). Die Produktionsobergrenzen der Maschinen liefern Ungleichungen
der Art x ≤ 2000 , y ≤ 4000 (Ungleichungen des Typs III). Gesucht sind dann diejenigen
Produktionsmengen x und y, für die unter den genannten Nebenbedingungen der Gewinn
maximal ist.
Solche Optimierungsaufgaben lösen wir zwar nicht im Vorkurs, aber die Bestimmung der
Lösungsmenge eines Systems linearer Ungleichungen ist eine sehr gute Vorübung.
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4 Quadratische Gleichungen und Ungleichungen

4.1 Quadratische Gleichungen

4.1.1 Lösen quadratischer Gleichungen

siehe
”
Studienvorbereitungskurs Mathematik“ Kapitel 1.3

4.1.2 Gleichungen, die auf quadratische Gleichungen führen

Bisher hatten wir es mit Gleichungen zu tun, bei denen leicht erkennbar war, dass es sich um
quadratische Gleichungen handelt oder dass sie in diese transformiert werden können. Oft
aber ist nicht auf Anhieb ersichtlich, ob eine gegebene Gleichung in die Gestalt einer linearen
oder einer quadratischen Gleichung gebracht und entsprechend gelöst werden kann oder ob
sie auf eine kompliziertere Gleichung führt.
Um zu zeigen, dass auch Gleichungen, die auf den ersten Blick überhaupt nichts mit qua-
dratischen Gleichungen zu tun zu haben scheinen, letztlich doch in diese umgeformt werden
können, werden wir nun zwei Gleichungstypen untersuchen, mit denen wir uns noch nicht
befasst haben: Bruchgleichungen und Wurzelgleichungen.

i) Bruchgleichungen

Gegeben ist die folgende Bruchgleichung:

3

x− 2
+

4

x
= 4

Das Hauptproblem besteht darin, dass in den Nennern der beiden Brüche Terme mit der
Unbekannten x stehen. Wünschenswert ist daher, diese Terme aus dem Nenner zu beseitigen.
Dies lässt sich am einfachsten erreichen, indem man die Gleichung mit dem Hauptnenner
multipliziert, denn dann lassen sich die genannten Terme herauskürzen, und danach tritt die
Unbekannte nur noch im Zähler auf.

3

x− 2
+

4

x
= 4 | · x(x− 2)

3x+ 4(x− 2) = 4x(x− 2) | ausmultiplizieren

3x+ 4x− 8 = 4x2 − 8x | − 7x+ 8

4x2 − 15x+ 8 = 0

Wir erhalten also eine quadratische Gleichung. Deren Lösungen sind die Lösungen der ur-
sprünglichen Bruchgleichung.
Die Lösung der quadratischen Gleichung ist schnell ermittelt:

4x2 − 15x+ 8 = 0 | : 4

x2 − 15

4
x+ 2 = 0

Anwenden der p-q-Formel liefert:

x1,2 = −−15
4

2
±

√
(15

8

)2
− 2
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=
15

8
±

√

225

64
− 128

64

=
15

8
±

√

97

64

=
15

8
± 1

8

√
97

Also gilt:

x1 =
15

8
+

1

8

√
97

x2 =
15

8
− 1

8

√
97

An dieser Stelle führen wir ausnahmsweise keine Probe durch, da nur gezeigt werden soll-
te, dass und wie eine Bruchgleichung auf eine quadratische Gleichung zurückgeführt werden
kann. Grundsätzlich aber ist eine Probe immer zwingend notwendig um zu überprüfen, ob die
berechneten Werte auch tatsächlich die Ausgangsgleichung erfüllen. (Führen Sie die Probe
doch einmal als Übung durch!) Um Rundungsfehler zu vermeiden, sollte man dabei keine
gerundeten Dezimalzahlen verwenden, sondern die in der Lösung auftretenden Bruch- und
Wurzelterme. Beispiel: Den Bruch 1

6 sollte man nicht gerundet als 0.2 wiedergeben (siehe
Kapitel 1.4).

ii) Wurzelgleichungen

Ein weiterer Gleichungstyp, der oft auf eine quadratische Gleichung führen kann, ist die Wur-
zelgleichung. Betrachten wir folgendes Beispiel:

x =
√
6x+ 13− 3

Hier besteht das Problem darin, dass die Unbekannte unter der Wurzel auftritt. Da sich eine
Quadratwurzel durch Quadrieren beseitigen lässt, liegt es nahe, die Gleichung zu quadrieren.
Täte man dies aber bereits mit der Gleichung in der jetzigen Gestalt, würde das Ziel nicht
erreicht, denn infolge der Differenz auf der rechten Seite ergäben sich nicht nur die Terme√
6x+ 13

2
und 32, sondern auch das Produkt 2 ·3

√
6x+ 13. Deshalb muss man die Gleichung

zuerst so umformen, dass der die Wurzel enthaltende Summand allein auf einer Seite der
Gleichung steht.
Auf dem beschriebenen Weg können wir die gegebene Wurzelgleichung nun leicht lösen:

x =
√
6x+ 13− 3 |+ 3

x+ 3 =
√
6x+ 13 |quadrieren

x2 + 6x+ 9 = 6x+ 13 | − 6x− 13

x2 − 4 = 0

x2 = 4

Also ergibt sich

x1 = 2

x2 = −2
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Probe:
1. Lösung: x1 = 2

2 =
√
6 · 2 + 13− 3

2 =
√
12 + 13− 3

2 =
√
25− 3

2 = 5− 3

2 = 2

2. Lösung: x1 = −2

−2 =
√

6 · (−2) + 13− 3

−2 =
√
−12 + 13− 3

−2 =
√
1− 3

−2 = 1− 3

−2 = −2

Die Probe zeigt, dass die berechneten Werte von x1 und x2 tatsächlich die Lösungen der
gegebenen Wurzelgleichung sind. Das ist nicht zwangsläufig immer der Fall, denn durch das
Quadrieren können zusätzliche Lösungen entstehen, die aber nur die quadratische Gleichung
erfüllen und nicht die ursprüngliche Wurzelgleichung.

4.1.3 Grafische Darstellung

Bisher wurden die quadratischen Gleichungen als algebraische Gleichungen behandelt, deren
Lösungen zu bestimmen sind. Deshalb standen nur arithmetische Operationen und algebrai-
sche Umformungen im Vordergrund.
Man kann eine quadratische Gleichung aber auch grafisch interpretieren. Dazu fasst man die
Terme der Gleichung als Terme einer Funktion auf. Die quadratische Gleichung dient dann
dazu, spezielle Werte einer quadratischen Funktion zu finden.
Um dies besser zu verstehen, sollen die Darstellungen einer Reihe grundlegender quadratischer
Funktionen betrachtet und der Einfluss verschiedener Parameter in der Gleichung untersucht
werden.

Wir beginnen mit der Normalparabel (Abbildung 16):

f1(x) = x2

Sie bildet für die nun folgenden Untersuchungen die Ausgangsbasis.

Nun werde eine Konstante addiert:

f2(x) = x2 + 2

Zu jedem Wert, den f1 einem Wert von x zuordnet, wird 2 addiert. Somit sind alle Werte,
die f2 zuordnet, um 2 größer als jene, die f1 zuordnet. Der Graph von f2 ist daher gegenüber
dem Graphen von f1 um +2 in Richtung der Ordinate verschoben (Abbildung 17). Die Ver-
schiebung erfolgt also um den Wert der additiven Konstante.

Nun werde direkt zu x eine Konstante addiert, so dass die entstehende Summe quadriert
wird:

f3(x) = (x− 3)2
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Abbildung 16: Normalparabel f1(x) = x2

Abbildung 17: f1(x) = x2 (schwarz) und die in Richtung der Ordinate verschobene Parabel
f2(x) = x2 + 2 (rot)

Wenn man für x Zahlen einsetzt, die um +3 größer sind als jene, die man in der Normalparabel
f1 für x einsetzt, ordnen f1 und f3 diesen Zahlen die gleichen Werte zu. Das bedeutet: Der
Graph der Funktion f3 ist gegenüber dem Graphen von f1 um +3 in Richtung der Abszisse
verschoben (Abbildung 18). Die Verschiebung in Richtung der Abszisse entspricht also dem
Negativen der zu x addierten Zahl.

44



Abbildung 18: f1(x) = x2 (schwarz) und die um +3 in Richtung der Abszisse verschobene
Parabel f3(x) = (x− 3)2 (rot)

Kombiniert man die beiden Arten von Verschiebungen, ergibt sich eine Funktion der Art

f4(x) = (x+ 2.5)2 − 1

Diese Parabel ist in Richtung der Abszisse um −2.5 und in Richtung der Ordinate um −1
verschoben (Abbildung 19).

Abbildung 19: Normalparabel f1(x) = x2 (schwarz) und verschobene Parabel
f4(x) = (x+ 2.5)2 − 1 (rot)
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Als Nächstes wird die Wirkung von Vorfaktoren von x2 untersucht. Der einfachste Vorfaktor
ist −1:

f5(x) = −x2

Die Werte, die f5 und f1 einem Wert von x zuordnen, unterscheiden sich nur durch das Vor-
zeichen. Der Graph von f5 ist also gegenüber dem Graphen von f1 an der Abszisse gespiegelt
(Abbildung 20).

Abbildung 20: Normalparabel f1(x) = x2 (schwarz) und an der Abszisse gespiegelte Parabel
f5(x) = −x2 (rot)

Einen ganz anderen Effekt haben Vorfaktoren, deren Betrag nicht 1 ist. Wir beginnen mit
einem Vorfaktor, deren Betrag größer als 1 ist.

f6(x) = 2x2

f6 ordnet den Variablenwerten doppelt so große Zahlen zu wie f1. Das bedeutet: Für f1(x) = 0
gilt auch f6(x) = 0, für alle anderen Werte von x ist der Unterschied zwischen f1(x) und f6(x)
um so größer, je größer f1(x) ist. Anders gesagt: Je größer der Betrag von x ist, desto schnel-
ler steigen die Funktionswerte von f6(x) an. Infolgedessen ist der Graph von f6 schmaler als
jener von f1. Man sagt auch: Die Parabel ist gestreckt. Der Vorfaktor 2 wirkt sich demnach
auf die Form der Parabel aus. Abbildung 21 veranschaulicht das.

Der Effekt eines Vorfaktors mit Betrag kleiner als 1 lässt sich bereits erahnen. Für unsere
Untersuchungen betrachten wir folgende Funktion:

f7(x) =
1

2
x2

f7 ordnet den Variablenwerten halb so große Zahlen zu wie f1. Für f1(x) = 0 gilt wieder
f7(x) = 0, für alle anderen Werte von x unterscheiden sich f1(x) und f7(x) wieder um so
mehr, je größer f1(x) ist. Dieses Mal nehmen die Funktionswerte von f7(x) langsamer zu
als von f1(x), und der Graph der neuen Parabel ist breiter als jener der Normalparabel f1
(Abbildung 22). Man sagt auch: Der Graph von f7 ist gestaucht.
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Abbildung 21: Normalparabel f1(x) = x2 (schwarz) und gestreckte Parabel f6(x) = 2x2 (rot)

Abbildung 22: Normalparabel f1(x) = x2 (schwarz) und gestauchte Parabel f7(x) = 1
2x

2

(rot)

Nun haben wir das Handwerkszeug, um die Lösung quadratischer Gleichungen grafisch zu
interpretieren.
Die Lösung der Gleichung

x2 = 4

lässt sich somit wie folgt auffassen: Gegeben ist die Funktion

f(x) = x2 .

Gesucht sind diejenigen Werte von x, denen f den Wert 4 zuordnet, also alle Werte von x,
für die

f(x) = 4
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oder auch
x2 = 4

gilt. Betrachtet man den Graphen von f(x) in Abbildung 23, so sieht man:

Abbildung 23: Parabel f(x) = x2, f(2) = f(−2) = 4 und x1 = −2, x2 = 2 markiert

Für x = 2 und x = −2 gilt f(x) = 4. Das entspricht genau den Lösungen der quadratischen
Gleichung

x2 = 4 ,

also

IL = {x ∈ IR |x = 2oderx = −2}
= {−2; 2 }

Analog lassen sich auch die Lösungen aller anderen quadratischen Gleichungen grafisch in-
terpretieren.

4.2 Quadratische Ungleichungen

Nachdem wir in diesem Kapitel ausführlich Gleichungen betrachtet haben, wenden wir uns
nun analog zu unserem Vorgehen in Kapitel 3 Ungleichungen zu, und zwar den quadratischen
Ungleichungen.

4.2.1 Grundlagen und Äquivalenzumformungen

Grundlagen

Die Situation bei quadratischen Ungleichungen ist grundlegend anders als bei linearen Glei-
chungen. Um dies zu verdeutlichen, betrachten wir die Lösungsmengen zweier sehr einfacher
quadratischer Ungleichungen.
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Die erste Ungleichung lautet:
x2 > 9

Damit sie erfüllt ist, muss
x > 3 oder x < −3

gelten. Die Lösungsmenge wird also von Zahlen aus zwei voneinander getrennten Intervallen
gebildet. Dies zeigt die grafische Darstellung in Abbildung 24 sehr deutlich.

Abbildung 24: Lösungsmenge der quadratischen Ungleichung x2 > 9

Ganz anders sieht es bei der Ungleichung

x2 < 9

aus. Sie wird erfüllt für alle x mit

x < 3 oder x > −3 ,

also
−3 < x < 3 .

Hier entspricht die Lösungsmenge also den Zahlen eines einzigen zusammenhängenden Inter-
valls endlicher Breite. Die folgende Grafik in Abbildung 25 zeigt das.
Abhängig vom Ungleichungszeichen, d.h. der Art der Relation (größer oder kleiner) erhal-
ten wir also Lösungsmengen vollkommen unterschiedlicher Struktur und somit folgende zwei
Fälle:

1. Fall: Es gelte
x2 > 9 .

Die möglichen Werte von x sind Elemente zweier voneinander getrennter Bereiche. Die
Lösungsmenge der Ungleichung ist daher die Vereinigungsmenge dieser zwei Teilmengen.
Dies lässt sich auf zwei äquivalente Arten und Weisen schreiben:

IL = {x ∈ IR |x > 3 oder x < −3}
= {x ∈ IR |x > 3} ∪ {x ∈ IR |x < −3}
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Abbildung 25: Lösungsmenge der quadratischen Ungleichung x2 < 9

2. Fall: Nun gelte
x2 < 9 .

Die Werte von x, die diese Ungleichung erfüllen, sind Elemente eines einzigen zusammenhän-
genden Bereiches. Somit lautet die Lösungsmenge:

IL = {x ∈ IR | − 3 < x < 3}

Dieser Sachverhalt wird später beim Bestimmen der Lösung quadratischer Ungleichungen
und deren graphischer Darstellung eine wichtige Rolle spielen.

Äquivalenzumformungen und Umformungen

Zur Lösung quadratischer Ungleichungen benötigt man nicht nur die bereits von den linea-
ren Ungleichungen bekannten Äquivalenzumformungen Addition, Subtraktion, Multiplikation
und Division, sondern es kommen noch die Operationen Radizieren (

”
Wurzel ziehen“) und Po-

tenzieren hinzu. Allerdings handelt es sich bei diesen nicht mehr um Äquivalenzumformungen.

i) Radizieren

Man radiziert, um Ungleichungen der Art

xn > r oder xn < r , n ∈ IN

zu lösen. Der Einfachheit halber betrachten wir im Rahmen dieses Vorkurses nur die Fälle
n = 2 und n = 3. Prinzipiell kann der Exponent natürlich eine beliebige reelle Zahl sein, doch
in diesem Fall müssten wir erst die Eigenschaften reeller Funktionen eingehender studieren.

Die Art der Lösungsmenge und der Umgang mit dem Ungleichungszeichen hängen vom Ex-
ponenten ab. Hat der Exponent n den Wert n = 2, wird zur Bestimmung von x eine Quadrat-
wurzel gezogen. In diesem Fall ergeben sich eine positive und eine negative Lösung. Ein Blick
auf die Lösung der zu Beginn dieses Abschnitts untersuchten Ungleichung x2 > 9 zeigt, dass
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sich eine Faustregel formulieren lässt: Bei der positiven Lösung bleibt das Ungleichungszei-
chen erhalten, bei der negativen muss es umgedreht werden. Abhängig von der ursprünglichen
Relation ergibt sich dann eine Lösungsmenge, die aus zwei getrennten Bereichen oder aus ei-
nem einzigen zusammenhängenden Bereich besteht.

Beispiel 1:
Die Ungleichung

x2 < 81

hat die positive Lösung
x < 9

und die negative Lösung
x > −9 ,

was sich auch in der Form
−9 < x < 9

wiedergeben lässt.
Demgegenüber besitzt die Ungleichung

x2 > 4

die positive Lösung
x > 2

und die negative Lösung
x < −2 .

Hier ergeben sich also zwei voneinander getrennte Bereiche.

Hat der Exponent n hingegen den Wert n = 3, wird zur Bestimmung von x eine dritte Wurzel
gezogen, und das Ungleichungszeichen bleibt erhalten.

Beispiel 2:
Die Ungleichung

x3 > 8

führt auf die Lösung
x > 2 .

Analog erhält man für die Ungleichung

x3 < −27

die Lösung
x < −3 .

Wir fassen das Gelernte wieder in wenigen Merksätzen zusammen.

Radizieren der beiden Seiten einer Ungleichung
Wird beim Lösen einer Ungleichung eine Quadratwurzel gezogen, erhält man eine positive
und eine negative Lösung. Bei der positiven Lösung bleibt das Ungleichungszeichen erhalten,
bei der negativen wird es umgedreht.
Wird beim Lösen einer Ungleichung eine dritte Wurzel gezogen, so bleiben Vorzeichen und
Ungleichungszeichen erhalten.
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ii) Potenzieren

Beim Potenzieren von Ungleichungen ist die Situation wesentlich komplizierter. Damit die
Problematik deutlich wird, betrachten wir ein paar einfache Zahlenbeispiele.
Wir beginnen mit zwei positiven Zahlen. Es gilt

3 < 5 .

Quadriert man diese Ungleichung, ergibt sich

9 < 25 .

Das Ungleichungszeichen bleibt also erhalten.
Anders ist die Situation im Falle zweier negativer Zahlen:

−4 < −3

Quadrieren führt nämlich auf die Relation

16 > 9 .

Hier muss man also das Ungleichungszeichen umdrehen.

In diesen Fällen ist auf den ersten Blick zu sehen, wie mit dem Ungleichungszeichen umgegan-
gen werden muss. Sobald aber die beiden Seiten der Ungleichung unterschiedliche Vorzeichen
besitzen, wird die Sache komplizierter.
Beginnen wir mit

−3 < 5 .

Nach Quadrieren erhalten wir
9 < 25 .

Da der Betrag der negativen Zahl kleiner als der Betrag der positiven Zahl ist, bleibt das
Ungleichungszeichen erhalten.
Im Fall von

−5 < 2

hingegen liefert Quadrieren
25 > 4 .

Da der Betrag der negativen Zahl größer als der Betrag der positiven Zahl ist, muss man das
Ungleichungszeichen umdrehen.
Der dritte Fall ist

−5 < 5 .

Hier ergibt sich nach Quadrieren
25 = 25 .

Da die Beträge von negativer und positiver Zahl gleich sind, erhält man nach dem Quadrieren
eine Gleichung.

Diese Reihe verschiedener Fälle muss nur beim Potenzieren mit geraden Exponenten un-
terschieden werden, da das Ergebnis einer solchen Potenz stets positiv ist. Bei ungeraden
Exponenten tritt diese Situation nicht auf. Um das zu veranschaulichen, betrachten wir die
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oben verwendeten fünf Ungleichungen noch einmal der Reihe nach, erheben sie aber nun in
die dritte Potenz.
Aus

3 < 5

folgt
27 < 125 .

Enstprechend folgt aus
−4 < −3

nach Potenzieren
−64 < −27 .

Als Drittes betrachten wir
−3 < 5 .

Hieraus folgt
−27 < 125 .

Aus
−5 < 2

erhalten wir
−125 < 8 .

Die letzte Ungleichung
−5 < 5

liefert
−125 < 125 .

Das Ungleichungszeichen bleibt also immer erhalten.

Wir fassen nun noch einmal zusammen, was verstanden sein sollte:

Potenzieren von Ungleichungen
1) Potenzieren mit geraden Exponenten
Abhängig davon, welches Vorzeichen und welche Beträge die beiden Seiten der Ungleichung
besitzen, können drei Fälle auftreten:
Das Ungleichungszeichen
– bleibt erhalten.
– muss umgedreht werden.
– muss durch ein Gleichheitszeichen ersetzt werden.
Man muss also eine genaue Fallunterscheidung vornehmen und darf die Ungleichung nicht
einfach quadrieren.
2) Potenzieren mit ungeraden Exponenten
Das Ungleichungszeichen bleibt stets erhalten.

Am Ende dieses Abschnitts machen wir noch einen kleinen Exkurs und werfen einen Blick
auf das Potenzieren von Ungleichungen, in denen Variablen aufteten. Dabei sind nur die Fälle
gerader Exponenten interessant, da im Fall ungerader Exponenten das Ungleichungszeichen
immer erhalten bleibt. Der Einfachheit halber untersuchen wir nur, was beim Quadrieren
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einer solchen Ungleichung geschieht.
Aus

x > 3

folgt
x2 > 9 .

Auch aus
x < −3

folgt
x2 > 9 .

Gilt aber
x < 3 ,

so muss man drei Fälle unterscheiden.
Für

−3 < x < 3

folgt
x2 < 9 .

Für
x < −3

folgt
x2 > 9 .

Der Fall
x = −3

liefert
x2 = 9 .

Ähnlich kompliziert wird es bei der Ungleichung

x > −3 .

Für
−3 < x < 3

folgt
x2 < 9 .

Im Fall von
x > 3

ergibt sich
x2 > 9 .

Für
x = 3

erhält man
x2 = 9 .

Wir sehen: Die Sache ist diffizil. Man muss sehr sorgfältig die verschiedenen Fälle untersuchen.
Dies Beispiel soll einen kleinen Einblick geben, vertiefen werden wir das Thema an dieser
Stelle aber nicht. Statt dessen wenden wir uns der grafischen Darstellung von Lösungen
quadratischer Ungleichungen zu.
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4.2.2 Grafische Darstellung

Wir wollen nun die Lösung quadratischer Ungleichungen grafisch darstellen. Eine sehr einfache
Form haben wir bereits zu Beginn von Abschnitt 4.2.1 kennen gelernt, nämlich die Darstellung
auf der reellen Zahlengeraden.
Darüber hinaus gibt es aber noch eine weitere Möglichkeit. Zur Erklärung betrachten wir die
Ungleichung

x2 > 4 .

Man fasst nun x2 als Funktion von x auf:

f(x) = x2

Dann ist die Ungleichung
x2 > 4

äquivalent zu der Aussage: Für welche Werte von x sind die Funktionswerte von f(x) größer
als 4? Abbildung 26 veranschaulicht das Ergebnis:

Abbildung 26: Lösungsmenge der quadratischen Ungleichung x2 > 4

Wenn x < −2 oder x > 2 gilt, ist die Ungleichung x2 > 4 erfüllt. Die entsprechenden Bereiche
auf der Abszisse und dem Graphen sind rot markiert. Die Lösungsmenge der Ungleichung ist
also

IL = {x ∈ IR |x < −2} ∪ {x ∈ IR |x > 2} .

Die Lösung der Ungleichung
x2 ≤ 1

ergibt sich analog und ist in Abbildung 27 dargestellt.
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Abbildung 27: Lösungsmenge der quadratischen Ungleichung x2 ≤ 1

Für die Lösungsmenge gilt also

IL = {x ∈ IR | − 1 ≤ x ≤ 1}

Zum Abschluss diese Kapitels betrachten wir noch zwei verschobene Parabeln 2. Grades.

Beispiel 3: Zu lösen ist
(x+ 3)2 − 1 > 3 .

Gefragt ist also: Wann sind die Funktionswerte einer Normalparabel, die in Richtung der
Abszisse um -3 und in Richtung der Ordinate um -1 verschoben wurde, größer als 3?
Zuerst lösen wir das Problem rechnerisch.

(x+ 3)2 − 1 > 3 |+ 1

(x+ 3)2 > 4

Dies führt auf zwei Fälle:

1. Fall: Es ergibt sich

x+ 3 > 2

x > −1

2. Fall: Nun ergibt sich

x+ 3 < −2

x < −5
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Insgesamt besitzt die Ungleichung demnach die Lösungsmenge

IL = {x ∈ IR |x < −5} ∪ {x ∈ IR |x > −1} .

Die zeichnerische Lösung ist in Abbildung 28 dargestellt.

Abbildung 28: Lösungsmenge der quadratischen Ungleichung (x+ 3)2 − 1 > 3

Beispiel 4: Gesucht ist die Lösung der Ungleichung

−x2 − 2x+ 1 ≥ −2

Es folgt

−(x2 + 2x− 1) ≥ −2 (ausgeklammert)

−(x2 + 2x+ 1− 1− 1) ≥ −2 (quadratische Ergänzung gebildet)

−(x+ 1)2 + 2 ≥ −2 | − 2

−(x+ 1)2 ≥ −4 | · (−1)

(x+ 1)2 ≤ 4

Dies führt wieder auf zwei Fälle.

1. Fall: Hier ergibt sich

x+ 1 ≤ 2

x ≤ 1
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2. Fall: Nun gilt

x+ 1 ≥ −2

x ≥ −3

Also erhalten wir als Lösungsmenge

IL = {x ∈ IR | − 3 ≤ x ≤ 1} .

Für die zeichnerische Lösung verwenden wir die in der dritten Zeile der Rechnung gewonnene
Darstellung der Ungleichung. Demnach lautet die betrachtete quadratische Funktion

f(x) = −(x+ 1)2 + 2 ,

und die Frage lautet: Für welche x sind die Funktionswerte größer oder gleich -2? Die Grafik
in Abbildung 29 veranschaulicht das Ergebnis.

Abbildung 29: Lösungsmenge der quadratischen Ungleichung −x2 − 2x+ 1 ≥ −2
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5 Potenzrechnung, Exponentialfunktionen, Logarithmen

5.1 Potenz- und Wurzelrechnung

5.1.1 Potenzrechnung

i) Rechenregeln

Die Potenzrechnung ist in der Mathematik grundlegend, und man muss sie genauso gut
beherrschen wie das kleine Einmaleins. Im Folgenden werden die Rechenregeln zuerst an-
schaulich hergeleitet und anschließend in allgemeiner Form zusammengefasst.

Multiplikation zweier Potenzen mit gleicher Basis

Das Produkt
a2 · a3

soll berechnet werden. Anschaulich bedeutet dieser Term: Zwei Faktoren a werden mit drei
Faktoren a multipliziert, so dass ein Produkt aus fünf Faktoren a entsteht. Das Ergebnis ist
somit eine Potenz, deren Exponent sich aus der Summe der Exponenten der beiden Aus-
gangspotenzen ergibt. Also:

a2 · a3 = a2+3 = a5

Division zweier Potenzen mit gleicher Basis

Der Quotient
a7

a5

muss berechnet werden. Schreibt man die Potenzen als Produkte, so stehen im Zähler sieben
Faktoren a und in Nenner fünf. Diesen Bruch kann man durch Kürzen vereinfachen; dadurch
bleiben im Nenner eine Eins und im Zähler zwei Faktoren a stehen. Die Anzahl der übrig
bleibenden Faktoren a entspricht also der Differenz der Faktorenanzahlen aus Zähler und
Nenner. Somit ist das Resultat eine Potenz, deren Exponent der Differenz der Exponenten
der gegebenen Potenzen entspricht. Also gilt:

a7

a5
= a7−5 = a2

Potenzieren eines Produktes; Produkt zweier Potenzen mit gleichem Exponenten

Das Produkt
(a · b)2

soll bestimmt werden. Dieses Produkt lässt sich wie folgt umschreiben:

(a · b)2 = a · b · a · b

Nach Sortieren der unterschiedlichen Faktoren und anschließendem Zusammenfassen ergibt
sich:

(a · b)2 = a · b · a · b = a · a · b · b = a2 · b2

Werden also Produkte potenziert, so kann der Exponent an die einzelnen Faktoren gezogen
werden.

Potenzieren eines Quotienten; Quotient zweier Potenzen mit gleichem Exponenten

Bei der Berechnung des Terms
(a

b

)2
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kann wie bei der Berechnung der Potenz eines Produktes vorgegangen werden. Somit ergibt
sich:

(a

b

)2
=

a2

b2

Potenzieren einer Potenz

Nun soll die folgende Potenz bestimmt werden:

(a2)3

Nach der Definition der Potenz handelt es sich hier um ein Produkt aus drei Faktoren a2:

(a2)3 = a2 · a2 · a2

Das Produkt besteht also aus 3 mal 2 Faktoren a. Somit müssen die beiden Exponenten 2
und 3 miteinander multipliziert werden, und es gilt:

(a2)3 = a2 · a2 · a2 = a2·3 = a6

Potenzen mit negativem Exponenten

Die Potenz
a−4

lässt sich in eine Potenz mit positivem Exponenten umschreiben, indem man die Potenz in
den Nenner schreibt:

a−4 =
1

a4

Allgemein kann man sagen: Wird eine Potenz auf die andere Seite des Bruchstriches geschrie-
ben (also statt in den Zähler in den Nenner und umgekehrt), so ändert sich das Vorzeichen
des Exponenten.

Zusammengefasst gilt also:

Potenzrechnung: Rechenregeln

Es seien a, b, n,m ∈ IR und a, b > 0. Dann gilt:

am · an = an+m

an

am
= an−m

(a · b)n = an · bn
(a

b

)n

=
an

bn

(am)n = an·m

a−n =
1

an

a0 = 1
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ii) Wichtige Hinweise

An dieser Stelle sollen einige wichtige Bemerkungen gemacht werden, um auf typische und
häufig gemachte Fehler hinzuweisen. Prägen Sie sich also die folgenden Hinweise bitte gewis-
senhaft ein!
Tritt die Zahl Null innerhalb einer Potenz auf, so unterscheiden sich die Ergebnisse abhängig
von der Position, in der die Null auftritt:

04 = 0 40 = 1 00 = 1

Besonderes Augenmerk gilt der Potenz 00. Als einfache Faustregel kann man sich merken:
Die Null im Exponenten ist entscheidend. Der präzise mathematische Beweis geht aber weit
über den Rahmen des Vorkurses hinaus.

Terme wie a4 und 4a sollten dringend sprachlich auseinandergehalten werden, um Missver-
ständnisse und Fehler zu vermeiden:

a4 = a · a · a · a
”
4 Faktoren a“

4a = a+ a+ a+ a
”
4 mal a“

Schließlich soll noch auf einen wichtigen Punkt im Zusammenhang mit algebraischen Ver-
knüpfungen von Potenzen hingewiesen werden. Es gilt:

a2 + a3 = a · a+ a · a · a
a5 = a · a · a · a · a

Offensichtlich handelt es sich hier um zwei völlig verschiedene Ergebnisse. Potenzen, die die
gleiche Basis besitzen, aber verschiedene Exponenten können also nicht addiert werden! Ins-
besondere können nicht einfach die Exponenten addiert werden.

iii) Zehnerpotenzen und Präfixe

Betrachten wir nun die Potenzen von Zehn in Potenz- und Dezimalbruchschreibweise:

100 = 102

10 = 101

1 = 100

0.1 = 10−1 =
1

10

0.01 = 10−2 =
1

102

Somit gilt:

0.04 6= 1

400

0.04 = 4 · 0.01 = 4 · 1

100
=

4

100

0.74 =
74

100
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5.1.2 Wurzelrechnung

Die Wurzelrechnung ist eigentlich gar kein neues Thema, sondern lässt sich vollständig auf die
Potenzrechnung zurückführen. Daher wird der Zusammenhang zwischen Potenzrechnung und
Wurzelrechnung kurz plausibel gemacht und dann eine Zusammenstellung der Rechenregeln
angefügt.

Man kann eine Wurzel in eine Potenz umschreiben. So gilt:

√
a = a

1

2

7
√
a3 = a

3

7

In der entstandenen Potenz taucht also ein Bruch im Exponenten auf: Im Nenner dieses Bru-
ches steht der Typ der Wurzel und im Zähler der Exponent der im Radikanden aufgeführten
Potenz.

Diese Umschreibung lässt sich leicht plausibel machen. Dazu betrachten wir verschiedene
Potenzen von 4:

42 = 16

41 = 4

40 = 1

Die Zahl 2 nun liegt zwischen 4 und 1 und ergibt sich durch Berechnung von
√
4. Somit ist

es plausibel, die Quadratwurzel in eine Potenz mit Exponent 1
2 umzuschreiben, denn sowohl

der Exponent 1
2 und als auch das Ergebnis 2 fügen sich in die Reihe der Potenzen von 4 und

deren Potenzwert ein:

42 = 16

41 = 4

4
1

2 = 2

40 = 1

Abschließend folgen die Rechenregeln für Wurzeln.

Wurzelrechnung: Rechenregeln

Es seien a, b ∈ IR (a, b > 0) und n,m ∈ IN. Dann gilt:

n
√
a · b = n

√
a · n

√
b

n

√
a

b
=

n
√
a

n
√
b

m

√

n
√
a = n·m

√
a denn

m

√

n
√
a =

(
a

1

n

) 1

m

= a
1

n·m

n
√
am = a

m

n
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5.2 Exponentialfunktionen

In diesem Abschnitt wollen wir uns mit der Exponentialfunktion befassen. Da sich die Eigen-
schaften einer reellen Funktion sehr gut anhand einer konkreten Anwendung begreifen lassen,
beginnen wir mit einem Beispiel.

Jemand hat 300 EUR gespart. Für die Geldanlage existieren zwei Alternativen:
1) Jedes Jahr wird die Sparanlage um 50 EUR erhöht.
2) Jedes Jahr wird die Sparanlage um 10% erhöht.
Welche Anlage ist günstiger?

Um dies zu beurteilen, stellen wir in beiden Fällen die Gleichung der Funktion auf, die die
jeweilige Anlageform beschreibt.

Fall 1:

Nach 0 Jahren sind 300 EUR vorhanden. Mit jedem weiteren Jahr kommen 50 EUR hinzu,
nach x Jahren also 50 · x EUR. Somit gilt:

f(x) = 50x+ 300

Es wird also immer ein fester Betrag addiert. Daher handelt es sich um ein lineares Wachstum.

Fall 2:

Um den Funktionsterm herzuleiten, gehen wir schrittweise vor. Für jedes Jahr bestimmen
wir den neuen Sparbetrag.

Jahr 0: 300

Jahr 1: 300 +
10

100
· 300

= 300
(

1 +
10

100

)

= 300 · 1.1

Jahr 1: 300
(

1 +
10

100

)

︸ ︷︷ ︸

ausklammern

+
10

100
· 300

(

1 +
10

100

)

︸ ︷︷ ︸

ausklammern

= 300
(

1 +
10

100

)

︸ ︷︷ ︸

ausgeklammert

(

1 +
10

100

)

= 300
(

1 +
10

100

)2
= 300 · 1.12

Man erkennt: Die Anzahl Jahre und der Exponent der Klammer
(

1 + 10
100

)

bzw. des Faktors

1.1 sind gleich. Somit gilt:
f(x) = 300 · 1.1x

Da die Variable x im Exponenten steht, spricht man von einer Exponentialfunktion.

Nun können wir die Ausgangsfrage beantworten. Dazu vergleichen wir für beide Anlagefor-
men die Beträge, die sich nach 2, 5 und 10 Jahren ergeben.

2 Jahre: 1) f(2) = 50 · 2 + 300 = 400
2) f(2) = 363
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5 Jahre: 1) f(5) = 550
2) f(5) = 483.15

10 Jahre: 1) f(10) = 600
2) f(10) = 778.12

Man sieht: Für kleinere Zeiträume liefert das lineare Wachstum ein höheres Ergebnis, für
größere Zeiträume hingegen das exponentielle Wachstum.

Nun können wir den allgemeinen Term einer Exponentialfunktion verstehen. Für eine sich
exponentiell verändernde Größe gilt:

f(x) = f(0) · qx

Welche anschauliche Bedeutung haben die auftretenden Größen?
Wir beginnen mit f(x) und x:

f(x) : Größe, deren Veränderung gemessen wird, z.B. Geld, Strahlung

x : In Abhängigkeit von x erfolgt die Zu- oder Abnahme, z.B. Zeit, Höhe

Als Nächstes betrachten wir die Bedeutung von f(0), f(x) und q:

f(0) : Menge, die am Anfang, also für x = 0 vorhanden ist

f(x) : Menge, die nach
”
Ablauf“,

”
Verstreichen“ von x vorhanden ist

q : Faktor, der die Zu- oder Abnahme beschreibt

Dabei gilt

q = 1.06 = 1 +
6

100
Zunahme um 6%

q = 0.93 = 1− 7

100
Abnahme um 7%

Im Falle einer Zunahme gilt also q > 1, im Falle einer Abnahme q < 1.
Der Funktionsterm einer Exponentialfunktion wird durch die Werte von f(0) und q festge-
legt. Daher lässt er sich auf zwei Wegen bestimmen:
1) f(0) und q sind explizit bekannt.
2) Zwei Wertepaare (x1/f(x1)) und (x2/f(x2)) werden angegeben, so dass sich zwei Glei-
chungen aufstellen und f(0) und q berechnen lassen.

Sehr beliebt ist es, die Exponentialfunktion mit der Basis e anzugeben, wobei e die Eulersche
Zahl darstellt (e ≈ 2.718). Dann gilt

f(x) = f(0) · ex

c

mit einer noch zu bestimmenden Konstanten c.
Der Vorteil dieser Darstellung der Exponentialfunktion liegt in sehr angenehmen mathema-
tischen Eigenschaften der Funktion ex begründet.

Nun untersuchen wir eine weiterführende Problemstellung. Dazu betrachten wir den Zerfall
eines radioaktiven Jodisotops, das eine Halbwertszeit TH von rund 7 d besitzt. Zu Beginn der
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Messung seien 80 g Jod vorhanden. Wieviel Jod gibt es noch nach 14 Tagen?
Zur Beantwortung dieser Frage gehen wir schrittweise vor. Wir starten mit x = 0:

Start: f(0) = 80

Nach einer Woche ist genau eine Halbwertszeit verstrichen. Somit hat sich die vorhandene
Jodmenge halbiert, und es gilt:

1. Woche: f(1) = 80 ·
(1

2

)1
= 40

Nach 2 Wochen ist eine weitere Halbwertszeit vergangen. Also gilt:

2. Woche: f(1) = 80 ·
(1

2

)

·
(1

2

)

= 80 ·
(1

2

)2
= 20

Die Anzahl vergangener Wochen ist also gleich der Zahl verstrichener Halbwertszeiten und
daher gleich dem Exponenten von (12).
Wenn x die Anzahl verstrichener Halbwertszeiten TH angibt, kann man also schreiben:

f(x) = 80 ·
(1

2

)x

Es interessieren allerdings auch Zeiträume, die keinen ganzzahligen Vielfachen der Halbwerts-
zeit TH entsprechen. So kann man sich z.B. die Frage stellen, wieviel Jod noch nach 10 Tagen
vorhanden ist. Wie geht man dann vor?
Um dies herauszufinden, untersuchen wir wieder die Zeiträume von 1 Woche und 2 Wochen,
jedoch soll die Variable der Funktion f diesmal die Anzahl verstrichener Tage angeben.
Bei der Berechnung der nach 1 Woche vorhandenen Jodmenge, d.h. bei f(7), taucht daher
eine Potenz von (12 ) auf, die den Exponenten 7 besitzt. Damit sich die gleiche Jodmenge
ergibt wie in dem Fall, in dem die Variable der Funktion die Anzahl Halbwertszeiten zählt,
muss die 7 noch durch die Halbwertszeit TH = 7 dividiert werden. Also gilt:

f(7) = 80 ·
(1

2

) 7

7

Nach zwei Wochen, also nach 14 Tagen und zwei verstrichenen Halbwertszeiten, ergibt sich:

f(14) = 80 ·
(1

2

) 14

7

Somit kann man den Zerfall des Jods wie folgt beschreiben:

f(t) = 80 ·
(1

2

) t

TH

mit

t : Zeit

TH : Halbwertszeit

und somit
t

TH
: Anzahl verstrichener Halbwertszeiten

Die Ausgangsfrage, wieviel Jod noch nach 10 Tagen vorhanen ist, kann also nun geklärt
werden:

f(10) = 80 ·
(1

2

) 10

7

≈ 29.72
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Allgemein wird ein exponentieller Prozess somit durch folgende Funktion beschrieben:

f(t) = f(0) · q
t

TH

mit
mit TH : Halbwertszeit, Drittelungstiefe, Vervierfachzeit . . .

Zum Ende dieses Kapitels wenden wir uns noch einer weiteren Variante von Problemstellung
zu. Diesmal untersuchen wir den Zerfall von 137Cs. Dessen Halbwertszeit TH beträgt etwa
TH = 30 y. Zu Beginn der Messung seien 180mg vorhanden. Wann existieren weniger als
5mg von 137Cs? Einsetzen in die Exponentialfunktion liefert:

5 = 180 ·
(1

2

) t

30

Gesucht ist t. Um nach t ausfzulösen, benötigt man Logarithmenrechnung. Daher wenden
wir uns im nächsten Kapitel diesem Thema zu.

5.3 Logarithmen

i) Grundlagen

Zu Beginn klären wir einige mathematische Begriffe. Dazu betrachten wir die Gleichung

23 = 8

Die hier auftretenden Größen bezeichnet man wie folgt:

23 Potenz

8 Potenzwert

2 Basis

3 Exponent oder Logarithmus

Tritt in der o.g. Gleichung eine Unbekannte auf, so ist zu ihrer Bestimmung abhängig von
ihrer Position eine andere Rechenoperation notwendig:

23 = x potenzieren

x3 = 8 Wurzel ziehen, radizieren

2x = 8 logarithmieren

Wir formulieren nun die Gleichung
23 = 8

so um, dass das Hauptaugenmerk dem Exponenten gilt:

Der Exponent, der zu der Basis 2 gehört, so dass der Potenzwert 8 ist, ist 3.
Der Exponent der Basis 2 für den Potenzwert 8 ist 3.

Der Logarithmus zur Basis 2 von 8 ist 3.

log2(8) = 3
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ii) Rechenregeln

Die Rechenregeln für Logarithmen lassen sich direkt aus den Rechenregeln für Potenzen
herleiten.
Die Gleichung

72 · 73 = 72+3

zeigt: Der Logarithmus zu einer definierten Basis von einem Produkt aus Potenzen ist gleich
der Summe der Logarithmen der einzelnen Potenzen. Somit gilt:

loga(x · y) = loga(x) + loga(y)

Aus
79

73
= 79−3

erkennt man: Der Logarithmus zu einer definierten Basis von einem Quotienten aus Potenzen
ist gleich der Differenz der Logarithmen der Einzelpotenzen. Das bedeutet:

loga

(x

y

)

= loga(x)− loga(y)

Wegen
(43)2 = 43·2

gilt: Eine Potenz wird hoch eine weitere Zahl genommen, d.h. eine Potenz wird potenziert.
Der Logarithmus des Ergebnisses ist gleich dem Produkt aus dem Logarithmus der Potenz
und der Zahl, mit der die Potenz potenziert wurde. Also:

loga(x
r) = r · loga(x)

Als Faustregel sagt man hier auch: Wird der Logarithmus einer Potenz gebildet, kann der
Exponent als Faktor vor den Logarithmus gezogen werden.

Wir fassen die Regeln noch einmal zusammen:

Logarithmenrechnung: Rechenregeln

Es seien x, y ∈ IR+, r ∈ IR und a ∈ IR+ \ {1}. Dann gilt:

loga(x · y) = loga(x) + loga(y)

loga

(x

y

)

= loga(x)− loga(y)

loga(x
r) = r · loga(x)

Der Logarithmus zur Basis 10 wird als dekadischer Logarithmus bezeichnet und der Loga-
rithmus zur Basis e als natürlicher Logarithmus. Für beide sind Abkürzungen gebräuchlich:

log10(x) = lg(x)

loge(x) = ln(x)

Ein Logarithmus zu einer beliebigen Bais a kann leicht in einen Logarithmus bezüglich einer
anderen Basis b umgerechnet werden. Es gilt:

loga(x) =
logb(x)

logb(a)
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Am gebräuchlichsten ist die Umrechnung in den dekadischen und den natürlichen Logarith-
mus:

loga(x) =
lg(x)

lg(a)
=

ln(x)

ln(a)

Nun können wir das zum Ende des letzten Kapitels formulierte Problem mit 137Cs lösen. Zur
Erinnerung: Das radioaktive Isotop 137Cs besitzt eine Halbwertszeit TH von rund TH = 30 y.
Zu Beginn der Messung seien 180mg vorhanden. Wann existieren weniger als 5mg? Das führt
auf die Gleichung:

5 = 180 ·
(1

2

) t

30

Gesucht ist t. Es folgt:

5 = 180 · 0.5 t

30 | : 180
5

180
= 0.5

t

30

1

36
= 0.5

t

30

t

30
= log0.5

( 1

36

)

| · 30

t = 30 · log0.5
( 1

36

)

t = 30 ·
lg
(

1
36

)

lg(0.5)

t ≈ 155.10 y

Dieses Ergebnis illustriert, warum auch heute noch, so viele Jahre nach dem Reaktorunfall
von Tschernobyl, frei wachsende Pilze aus dem Bayerischen Wald oder das Fleisch von Wild-
tieren signifikant radioaktiv belastet sind.
Werfen wir noch einmal einen Blick auf den Rechenweg. Wir haben eine Gleichung gelöst,
bei der die Unbekannte im Exponenten steht. Eine solche Gleichung bezeichnet man als Ex-
ponentialgleichung. Dies leitet direkt zum nächsten Kapitel über, das sich ausschließlich der
Lösung von Gleichungen diesen Typs widmet.

5.4 Exponentialgleichungen

Exponentialgleichungen treten in vielen Bereichen auf. So haben wir Ende des letzten Kapi-
tels eine einfache Gleichung dieses Typs aus dem Bereich der Kernphysik kennen gelernt und
gelöst. Darüber hinaus gibt es aber noch viele andere Anwendungen, in denen Exponential-
gleichungen eine wichtige Rolle spielen. Um dies zu illustrieren, werden im Folgenden drei
konkrete Beispiele betrachtet.

Das erste Beispiel stammt aus dem Finanzsektor. Jemand besitzt zwei Sparverträge. Der
erste wurde mit einem Startkapital von 1000 EUR begonnen und liefert 2% Zinsen. Mit dem
zweiten ist ebenfalls ein Zinssatz von 2% verknüpft, aber er begann 5 Jahre später, und
das Startkapital beträgt 1500 EUR. Wann sind mit beiden Verträgen zusammen 4000 EUR
angespart?
Die Entwicklung des KapitalsK in Abhängigkeit von der Zeit t beschreibt folgende Gleichung:

K(t) = 1000 · 1.02t + 1500 · 1.02t−5 für t ≥ 5
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Der erste Summand gibt den Beitrag des ersten Sparvertrages wieder und der zweite Sum-
mand den Beitrag des zweiten Sparvertrages. Die Bedingung t ≥ 5 ist notwendig, weil der
zweite Vertrag 5 Jahre später startete. Die Gleichung ergibt also nur einen Sinn, wenn t ≥ 5
gilt, da andernfalls nur der erste Sparvertrag existiert.
Diese Gleichung werden wir am Ende des Kapitels noch lösen.

Das zweite Beispiel ergibt sich durch eine leichte Abwandlung aus dem ersten, und zwar sollen
nun die Zinssätze unterschiedlich sein. Dies führt auf die Gleichung:

K(t) = 1000 · 1.02t + 1500 · 1.03t−5 für t ≥ 5

Diese vermeintlich kleine Änderung erschwert das Auffinden der Lösung erheblich. Daher
werden wir im Vorkurs nicht mehr auf den Lösungsweg eingehen.

Als Drittes betrachten wir ein Beispiel aus dem Bereich der Kernphysik. Die Funktion f(t)
beschreibe die Gesamtmenge zweier radioaktiver Isotope in Abhängigkeit von der Zeit t.
Dabei habe das eine Isotop eine Halbwertszeit von 30 y, und es liegen zu Beginn 300 g vor,
vom zweiten Isotop sind anfangs 200 g vorhanden, und es besitzt eine Halbwertszeit von 70 y.
Das führt auf folgende Funktion f(t):

f(t) = 300 · 0.5 t

30 + 200 · 0, 5 t

70

Das Ermitteln der Lösung dieser Gleichung ist wie schon beim zweiten Beispiel nicht mehr
einfach zu bewerkstelligen und geht über den Rahmen des Vorkurses hinaus.

Wir werden nun drei verschiedene Lösungswege von Exponentialgleichungen betrachten. Wir
beginnen mit der einfachsten Variante. Gegeben ist:

52x−3 = 51

Da zwei Potenzen gleich sind, deren Basen ebenfalls übereinstimmen, müssen auch die Ex-
ponenten gleich sein. Somit gilt:

2x− 3 = 1

2x = 4

x = 2

Ein bisschen schwieriger ist die folgende Gleichung:

92x+2 = 27

Die Basen der Potenzen sind nun verschieden, jedoch lassen sich beide Potenzen leicht in
andere Potenzen mit gleicher Basis umschreiben. Das liefert:

(32)2x+2 = 33

Nun müssen wieder die Exponenten gleich sein, und es ergibt sich:

2(2x+ 2) = 3

4x+ 4 = 3

x = −1

4
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Als Drittes betrachten wir folgende Gleichung:

7x−1 = 3 · 5x

In diesem Fall sind die Basen aller auftretenden Potenzen unterschiedlich und lassen sich
auch nicht in andere Potenzen mit gleicher Basis umschreiben. Der einzige Weg, an die im
Exponenten stehende Unbekannte heranzukommen, ist daher, beide Seiten der Gleichung zu
logarithmieren. Welchen Logarithmus man dabei verwendet, ist unerheblich. An dieser Stelle
wird der dekadische Logarithmus eingesetzt. Somit gilt:

lg(7x−1) = lg(3 · 5x)

Anwenden der Logarithmengesetze liefert

(x− 1) lg(7) = lg(3) + x lg(5)

Offensichtlich haben wir es nun lediglich noch mit einer linearen Gleichung in x zu tun.
Ausmultiplizieren der Klammer auf der linken Seite liefert:

x lg(7)− lg(7) = lg(3) + x lg(5)

Nun werden die Summanden so sortiert, dass alle Summanden mit x auf der linken Seite
stehen und alle ohne x auf der rechten:

x lg(7)− x lg(5) = lg(3) + lg(7)

Ausklammern von x ergibt

x
(
lg(7)− lg(5)

)
= lg(3) + lg(7)

Nun wird lediglich noch durch die Klammer dividiert:

x =
lg(3) + lg(7)

lg(7)− lg(5)

Als Dezimalzahl ergibt sich:
x ≈ 9.05

Mit diesem Rüstzeug in der Tasche können wir nun das Problem mit den beiden Sparverträgen
vom Beginn des Kapitels lösen. Die Ausgangsgleichung lautet:

4000 = 1000 · 1.02t + 1500 · 1.02t−5

Zur Vereinfachung wird als Erstes durch 500 dividiert:

8 = 2 · 1.02t + 3 · 1.02t−5

Ein Zwischenziel auf dem Weg zur Lösung ist, gleiche Potenzen zu erzeugen, in denen t im
Exponenten steht. Das ist hier durch Anwenden der Potenzgesetze leicht zu schaffen:

8 = 2 · 1.02t + 3 · 1.02t · 1.02−5

Nun wird die Potenz 1.02t ausgeklammert:

8 = 1.02t(2 + 3 · 1.02−5)
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Division durch die Klammer liefert:

1.02t =
8

2 + 3 · 1.02−5

Nun können beide Seiten der Gleichung logarithmiert werden. Mit Anwendung eines Loga-
rithmengesetzes auf der linken Seite ergibt sich:

t · lg(1.02) = lg
( 8

2 + 3 · 1.02−5

)

Nun muss man lediglich noch durch lg(1.02) dividieren, und die Gleichung ist gelöst:

t =
lg
(

8
2+3·1.02−5

)

lg(1.02)

Als Dezimalzahl erhält man:
t ≈ 26.67 y
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6 Trigonometrie

6.1 Trigonometrie - Berechnungen

siehe
”
Studienvorbereitungskurs Mathematik“ Kapitel 4

6.2 Bogenmaß

siehe
”
Studienvorbereitungskurs Mathematik“ Kapitel 4.1

6.3 Winkelfunktionen

siehe
”
Studienvorbereitungskurs Mathematik“ Kapitel 4.1 und 4.2
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7 Aufgaben

1.3 Modellieren mit Termen

1) Schreiben Sie als Term mit einer Variablen.
a) das Dreifache einer Zahl
b) ein Fünftel einer Zahl
c) eine um 3 vermehrte Zahl
d) eine um 5 verminderte Zahl
e) das Quadrat einer Zahl
f) das um 5 verminderte Dreifache einer Zahl
g) ein Fünftel einer um 3 vermehrten Zahl
h) das Quadrat der um 1 größeren Zahl

2) Stellen Sie die entsprechenden Terme auf.
a) Eine Zahl wird mit 7 multipliziert, dann wird 11 subtrahiert. Das Ergebnis wird quadriert
und dann das Doppelte der Zahl addiert.
b) Von einer Zahl wird 5 subtrahiert. Das Ergebnis multipliziert man mit dem um 3 vermin-
derten Doppelten der Zahl. Zum Schluss wird das Quadrat der Zahl addiert.

3) Stellen Sie wieder die Terme auf.
a) Das Produkt aus der Summe der Zahlen a und b und aus b selbst.
b) Die Summe aus dem Quotienten von a und b und dem Quadrat von b.
c) Die Quadratwurzel aus der Summe der Quadrate von a und b.
d) Das Quadrat der Quadratwurzel aus der Summe von a und b.
e) Die Quadratwurzel aus der Differenz des Quadrates von a und a.

4) Verbalisieren Sie die folgenden Terme wie in Aufgabe 3).
a) a2 − b2.

b) a2

b2

c)
√
a+ b

d)
√
a+

√
b

e) a2 −√
a

5) Nun gemischt...
a) (y − 4)2 + 3y
b) Das Produkt aus einem Siebtel der Zahl und dem um 1 verminderten Quadrat der Zahl
c) (w2 + 4w)2
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1.4 Dezimalzahlen, Rechnungen mit der Zahl Null, Bruchteile

Rechnungen mit der Zahl Null

1) Wie lauten die Ergebnisse?
a) 0 · 5 b) 12 · 0 c) 0 · 0 d) 7

0 e) 0
13 f) 0

0

Bruchteile

2) Geben Sie den beschriebenen Bruchteil an.
a) eine Person von fünf
b) Jeden vierten Tag macht Fritzchen einen Backup.
c) Laut Verordnung soll ein Medikament alle 8 Stunden eingenommen werden.
d) 3 von 5 Äpfeln, die in einem großen Korb liegen, sind faul.
e) Die Hälfte der unter d) bestimmten Apfelmenge war richtig reif. Welcher Anteil aller Äpfel
war faul und gleichzeitig reif?

3) 3
4 von 0.024 g Gips werden angerührt. Wieviel g sind das?

4) 2 von 3 Personen sind rothaarig. Wieviel Personen sind das? Wieviele Rothaarige gibt es
unter 1500 Personen?

5) 3
4 g von 8.104 g Gips werden angerührt. Wieviel g sind das?

6) Ein Rad hat einen Umfang von 160 cm. Wie oft dreht es sich auf einer Stecke von 4 km?

7) 4 g von 96 g werden verwendet. Wieviel g sind das? Welcher Anteil ist das?

8) Wieviele Portionen von 0.2 g kann man aus einer Menge von 12 g herstellen?

9) 40 Personen feiern eine Gartenparty. 3
4 der Personen möchten eine Viertelpizza, alle ande-

ren nur eine Achtelpizza. Wieviele Pizzen muss man kaufen?

10) In einen Theatersaal passen 570 Personen. Der Saal ist bereits zu 2
3 voll. Wieviele Perso-

nen befinden sich im Saal? Wieviel Sitzplätze sind noch frei?

11) 200 kg Sand werden in kleine Säckchen gepackt. Wieviel Sand ist in einem Säckchen, wenn
man 400 Säckchen verwendet?

12) Wieviele Pakete mit einem Dreiviertelpfund Kaffee kann man aus 15 Pfund Kaffee her-
stellen?

13) Müllers fahren in Urlaub. 3
5 der 450 km langen Strecke haben sie bereits geschafft. Wie-

viele Kilometer müssen sie noch fahren?

14) 7 von 9 Euro werden verschwendet. Wieviel Euro sind das? Mit wieviel verschwendeten
Euro muss man bei einem Gesamtbetrag von 1800 EUR rechnen?

74



15) Jeder siebte Euro wird für Socken ausgegeben. Mit welchen Ausgaben für Socken muss
man bei einem Gesamtbetrag von 560 EUR rechnen?
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2 Funktionen

1) Geben Sie für die beschriebenen Zuordnungen an, ob es sich um eine Funktion oder nur
um eine Relation handelt.
a) Inhaber/in eines Autos 7→ Auto
b) Auto 7→ Inhaber/in laut Fahrzeugschein
c) Schwester 7→ Bruder
d) Kind 7→ Elternpaar (biologische Eltern)
e) Kind 7→ Großelternpaar
f) Höhe über NN 7→ Temperatur
g) Höhe über NN 7→ Luftdruck

2) Geben Sie für die folgenden mittels Gleichungen definierten Zuordnungen an, ob es sich
um eine Funktion oder nur um eine Relation handelt.
a) f(x) = 2x
b) f(x) = x2 + 5
c) f(x) =

√
x2 + 1

d) f(x) = 3
√
x− 5

e) f(x) = 1
x2−5

f) f(x) = 7
g) x = 3
h) x2 + y2 = 4

3) Geben Sie für die folgenden mittels Wertetabellen beschriebenen Zuordnungen an, ob es
sich um eine Funktion oder nur um eine Relation handelt.

a)
x 1 2 3 4 5 6 7

f(x) 10 11 20 30 40 100 101

b)
x 2 2 3 4 10 100 1000

f(x) 4 3 -1 -5 -5 -5 -5

c)

x 1 2 3 3 4 5 6

f(x) 7 8 9 10 11 12 13

d)
x -3 -2 -1 0 1 2 3

f(x) 8 6 4 2 -4 -6 -8

e)

x -2 0 2 4 6 8 400

f(x) 9 9 9 9 9 9 9
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f)
x -2 -2 -2 -2 -2 -2 -2

f(x) 9 8 7 6 5 4 3

4) Geben Sie die folgenden Aussagen in korrekter formaler Schreibweise wieder.
a) Die Funktion f ordnet allen reellen Zahlen negative Werte zu.
b) Die Funktion g ordnet der Zahl 2 den gleichen Wert zu wie die Funktion f an dieser Stelle.
c) Der von der Funktion g einer Zahl zugeordnete Wert unterscheidet sich von dem von der
Funktion f zugeordneten Wert nur durch das Vorzeichen.
d) Der Wert, den die Funktion f einer Zahl zuordnet, ist viermal so groß wie der Wert, den
die Funktion f dem doppelten dieser Zahl zuordnet.
e) Der Wert, den die Funktion f der Zahl 34 zuordnet, ist um 12 größer als der Wert, den
die Funktion g der Zahl 34 zuordnet.
f) Die Funktionswerte von f sind an jeder Stelle größer als die Funktionswerte von g.
g) Die Funktion f ordnet 3 einen Wert zu. Diesem Wert ordnet die Funktion g den Wert -1 zu.

5) Geben Sie folgende Zusammenhänge in korrekter Fachsprache wieder.
a) h(0) = 4
b) h(4) = 0
c) h(x) ≤ 0
d) 1

2h(x) = w(x)
e) h(7) = 1

h(6)

f) w(12) =
(

w(8)
)2

g) h(−3) = −w(−3)
h) h(2x) = w(x)
i) h(w(1)) = h(1)
j) h(w(1)) = w(1)

6) Gegeben ist die Funktion f(x) = 4x2 − 2. Bestimmen Sie:
a) f(x+ 3)
b) f(z − 1)
c) (f(x))2

d) f(x2)
e) f(x) + 2
f) (f(x)− 10)2

g) f(2x)
h) f(−x)
i) −f(x)

7) Gegeben ist die Funktion f(x) = 5x2.
a) Bestimmen Sie f(y).
b) Wie verändert sich der Funktionswert, wenn die Variable x

i) verdoppelt, ii) verdreifacht, iii) halbiert, iv) um den Faktor a verändert wird?

8) Die Funktion s beschreibe in Abhängigkeit von der Zeit näherungsweise den Weg, den ein
Körper oder ein Objekt zurücklegt, wenn er auf der Erde frei fällt. Eine suggestive Schreib-
weise wäre also s(t) = 5t2.
Was bedeutet es dann anschaulich, den Wert s(2t) zu bestimmen?
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9) Identifizieren sie äquivalente Funktionen.

a) Gegeben ist die Funktion f(x) = 3x2 + 1 mit x ∈ IR, f(x) ∈ IR. Welche der folgenden
beiden Funktionen beschreiben die gleiche Funktion wie die gegebene Funktion?
g(t) = 3t2 + 1 mit t ∈ IR, g(t) ∈ IR
h(l) = 3l2 + 1 mit l ∈ IN, h(l) ∈ IR

b) Gegeben ist die Funktion 2x + 8y = 7. Welche der folgenden Funktionen beschreiben
die gleiche Funktion wie die gegebene Funktion? Alle auftretenden Größen seien dabei
reelle Zahlen.
x1 + 4x2 = 3.5
g(z) = −1

4z +
7
8

f(x) = 7− 2x

c) Gegeben ist die Funktion f(x) = (3x)2. Welche der folgenden Funktionen beschreiben
die gleiche Funktion wie die gegebene Funktion? Alle auftretenden Größen seien dabei
reelle Zahlen.
g(z) = (3z)2

h(y) = 3y2

w(s) = 3x2

d) Gegeben ist die Funktion s1(v) = 4v2 − 3v mit v, si(v) ∈ IR, i = 1, 2, 3, 4.
Welche der folgenden Funktionen beschreiben die gleiche Funktion wie die gegebene
Funktion?
s2(v + 1) = 4(v + 1)2 − 3(v + 1)
s3(v) = 4(v + 1)2 − 3(v + 1)
s4(v − 1) = 4v2 − 3v

10) Welche der folgenden Aussagen sind wahr und welche falsch?
a) Eine Zuordnung ist nicht notwendigerweise eine Funktion.
b) Wenn eine Zuordnung eine Funktion ist, dann ist sie auch eine Relation.
c) Ein Synonym für Relation ist Funktion.
d) Wenn verschiedenen x-Werten der gleiche Wert f(x) zugeordnet wird, dann ist es keine
Funktion.
e) Wenn der Graph einer Zuordnung die Ordinate (y-Achse) mehrmals schneidet, dann kann
es sich gegebenenfalls um eine Funktion handeln.
f) Wenn eine Parallele zur Abszisse (x-Achse) den Graph einer Zuordnung mehrmals schnei-
det, dann ist die Zuordnung keinesfalls eine Funktion.
g) Wenn eine Parallele zur Ordinate den Graphen einer Zuordnung mehrmals schneidet, dann
ist die Zurodnung eine Relation.
h) Wenn der Graph einer Zuordnung symmetrisch zur Abszisse ist, dann handelt es sich um
eine Funktion und keine Relation.

11) Die Funktion f beschreibt die Höhe einer Sonnenblume (in Metern) in Abhängigkeit von
der Zeit t (in Wochen). Geben Sie die folgenden Alltagsformulierungen in formal korrekter
mathematischer Form wieder.
a) Nach zwei Wochen ist die Sonnenblume 0.3m hoch.
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b) In den ersten fünf Wochen wächst die Sonnenblume um 0.6m.
c) Nach 8 Wochen wächst die Sonnenblume nicht mehr. Sie erreicht eine Höhe von 2.20m.

12) Die Funktion p beschreibt den Luftdruck (in Hektopascal hPa) in Abhängigkeit von der
Höhe h (in Metern). Wie kann man die folgenden mathematischen Aussagen in Alltagsdeutsch
ausdrücken?
a) p(0) = 1013
b) p(8000) − p(7000) = −73.17
c) p(h) ≤ 200 für h ≥ 12000

13) Die unten dargestellte Funktion beschreibt die Wachstumsgeschwindgkeit w eines Na-
delbaums (in Metern pro Jahr) in Abhängigkeit vom Alter t (in Jahren). Geben Sie die
Antworten auf folgende Fragen in formaler mathematischer Form.
a) Wann ist die Wachstumsgeschwindigkeit am größten?
b) Wie groß ist die höchste Wachstumsgeschwindigkeit?
c) Wie groß ist die kleinste Wachstumsgeschwindigkeit?
d) Wie verändert sich die Wachstumsgeschwindigkeit zwischen dem 60. und dem 80. Lebens-
jahr des Nadelbaums?
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14) Geben Sie für die nachstehenden Funktionen g1(x), g2(x) usw. in Form einer Gleichung
an, welcher Zusammenhang zwischen diesen Funktionen und der Funktion f(x) besteht.

Die Funktion f(x) werde durch die folgende Wertetabelle charakterisiert:

x 2 4 6 8 10

f(x) 12 7 3 5 9

a)
x 2 4 6 8 10

g1(x) 24 14 6 10 18

b)

x 1 3 5 7 9

g2(x) 12 7 3 5 9

c)
x 2 4 6 8 10

g3(x) 13 8 4 6 10

d)
x 6 12 18 24 30

g4(x) 12 7 3 5 9

e)

x 1 2 3 4 5

g5(x) 11 6 2 4 8

f)
x 4 8 12 16 20

g6(x) 6 3.5 1.5 2.5 4.5
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3.1 Lineare Gleichungen

3.1.1 Eine lineare Gleichung

1) Eine Großmutter ist 84 Jahre alt, ihre Enkelin ist 8 Jahre alt.
a) In wie vielen Jahren wird die Großmutter fünfmal so alt wie die Enkelin sein?
b) Vor wie vielen Jahren war sie zwanzigmal so alt?

3.1.2 Gleichungssysteme aus linearen Gleichungen

2) a) Verkürzt man in einem Rechteck die lange Seite um 2 cm und verlängert die andere um
2 cm, so wächst der Flächeninhalt um 4 cm2. Verlängert man beide Seiten um jeweils 3 cm,
so wächst der Flächeninhalt um 57 cm2. Wie lang sind die ursprünglichen Seiten?
b) Der Umfang eines gleichschenkligen Dreiecks beträgt 37 cm. Die Basis des Dreiecks ist um
5 cm kürzer als die Schenkel. Berechnen Sie die drei Seitenlängen des Dreiecks.

3) Ein Vater hat Haselnüsse gepflückt und in seine beiden Jackentaschen verteilt. Darauf sagt
er zu seinem Sohn:

”
Ich habe in der rechten Tasche dreimal so viele Nüsse wie in der linken.

Nehme ich aber 30 Nüsse von der rechten Tasche in die linke, so befinden sich in der linken Ta-
sche dreimal so viel wie in der rechten.“ Wie viele Nüsse hat er ursprünglich in jeder Tasche?

4) In 16 Jahren wird eine Mutter doppelt so alt wie ihre Tochter sein. Zusammen sind beide
heute 40 Jahre alt. Wie alt ist jede?

5) a) Die Summe zweier Zahlen hat den Wert 25, ihre Differenz den Wert 7. Wie heißen die
beiden Zahlen?
b) Subtrahiert man vom Vierfachen einer Zahl das Dreifache einer zweiten Zahl, so erhält
man 18. Addiert man zum Dreifachen der ersten Zahl die Zahl 10, so erhält man das Vier-
zehnfache der zweiten Zahl.

6) a) Eine zweistellige Zahl wird um 9 größer, wenn man ihre Ziffern vertauscht. Ihre Zehner-
ziffer ist halb so groß wie ihre Einerziffer. Berechnen Sie die Zahl.
b) Die beiden Faktoren eines Produktes unterscheiden sich um 4. Vermindert man beide Fak-
toren um 3, so nimmt das Produkt um 69 ab. Wie groß sind die beien Faktoren?

7) Eine Firma bezieht von zwei Herstellern Mikrochips.
Hersteller A berechnet einen Versandkostenanteil von 10 EUR pro Lieferung und verlangt
für jeweils 10 Chips 10 EUR. Hersteller B liefert erst ab einer Bestellung von 40 Chips und
verlangt keine Versandkosten. 40 Chips kosten 30 EUR, für jede weitere 10 Chips erhöht sich
der Preis um 20 EUR. Für welche Bestellmenge ist die jeweilige Herstellerfirma günstiger?
Ermitteln Sie die Lösung erst rechnerisch und dann grafisch.
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8) Es sollen drei Gleichungssysteme gelöst werden.

a) −16y = 4x + 3 b) 2
7 = 3x + 4y c) −16 = 4x + 3y

−16y = −56x − 2 2
7 = 3x + 2y −16 = −56x − 2y

Man könnte nun stets das Gleichsetzungsverfahren anwenden, da jeweils beide Gleichungen
nach dem gleichen Term aufgelöst sind. Ist das immer der sinnvollste Weg, um die Lösung
der Gleichung zu bestimmen? Begründen Sie Ihre Antwort.

9) Gegeben ist das folgende lineare Gleichungssystem mit den Variablen x und y und den
Parametern a und b:

x− 5y = a

3x+ by = 57

Gesucht sind diejenigen Werte der Parameter a und b, für die das System
a) die Lösung (2; 1) hat; b) keine Lösung hat; c) unendliche viele Lösungen hat.

10) Warum ist das folgende Gleichungssystem kein lineares Gleichungssystem?

xy = 3 + 2x

2xy − 8 = 3x

Trotzdem kann man das Gleichungssystem lösen. Wie gehen Sie vor?
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3.1 Lineare Gleichungen

3.1.3 Grafische Darstellung

1) Zeichnen Sie die folgenden Geraden ohne Wertetabelle und nur mit Hilfe von Steigung und
Ordinatenabschnitt.
Welche Art Geraden liegen bei den Teilaufgaben e) und f) vor?

a) g(x) =
1

3
x− 2

b) g(x) = −4x+ 1
c) g(x) = 2x

d) g(x) =
5

3
x− 1

2
e) g(x) = 3.5
f) x = −3

2) Bestimmen Sie die Funktionsterme der nachstehend abgebildeten Geraden.
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3) Stellen Sie die folgenden Gleichungssysteme grafisch dar und ermitteln Sie die Lösung.
a)

y =
2

3
x− 3

y =
2

3
x+ 2

b)

y =
3

4
x− 1

2y + x = 8

c)

3x− y = 4

2y + 8 = 6x

d)

2x+ 5y − 5 = 0

5y + 2x+ 10 = 0

4) Wie veranschaulicht man grafisch eine lineare Gleichung mit drei Variablen? Welche Fälle
treten auf, wenn man drei lineare Gleichungen mit drei unbekannten lösen muss? Argumen-
tieren Sie grafisch!
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3.2 Lineare Ungleichungen

1) Ergänzen Sie das richtige Ungleichungszeichen:
a) −1

4 . . . − 1
5 b) (−4)2 . . . (−5)2 c) (−4)3 . . . (−5)3

d) −42 . . . (−5)2 e) 1
(−4)2 . . .

1
(−5)3 f) 1

(−4)3 . . .
1

−(−5)3

2) Wann gilt a) ab > 0 ? b) −2c < 0 ? c) a2 < a3 oder a2 > a3 ?

3) Bestimmen Sie die Lösungsmenge folgender Ungleichungen.
a) −5x+ 3 > −17
b) 0.6 − 3x < 3x− 2.4
c) −5

9x− 1 > −2
3

4) Welche Zahl kommt jeweils infrage? Lösen Sie mit Hilfe einer Ungleichung.
a) Wenn man von 30 eine Zahl subtrahiert, erhält man mehr als 12.
b) Wenn man zu 12 eine Zahl addiert, erhält man weniger als 3.

5) Der Umfang eines Rechtecks ist größer als 20 cm. Die längere Seite ist um 2 cm länger als
die kürzere Seite. Was kann man über die Länge der kürzeren Seite aussagen?

6) Lösen Sie das Zahlenrätsel mit Hilfe einer Ungleichung. Welche Zahlen kommen infrage?
a) Wenn man eine Zahl zu 12 addiert und die Summe durch 5 dividiert, erhält man mehr

als 4.
b) Wenn man eine Zahl um 11 verringert und die Differenz mit 7 multipliziert, erhält man

weniger als 42.
c) Wenn man das Doppelte einer Zahl von 17 subtrahiert und die Differenz verdreifacht,

erhält man höchstens 15.

7) Bestimmen Sie die Lösungsmenge.
a) (13x− 1)(4x + 5) ≤ (2x− 6)(23x+ 2

9)
b) (3s + 3)(7s + 7) < 21s2 + 105
c) (t− 7)2 < (t+ 3)(t − 3) + 2
d) (1− 4v)(1 + 4v) ≥ (3 + 2v)(1 − 8v) + 20

8) Bestimmen Sie die Lösungsmenge.
a) 7− a(x− 2) > 4
b) (5 + q)(x− 11) > 2
c) (4− q)(x+ 9) < 6
d) (p − q)(x+ 9) < 6

9) Bestimmen Sie grafisch die Lösungsmenge folgender Systeme aus zwei linearen Unglei-
chungen.

a)

−x+ y ≤ −2
1

3
x+ y < 4
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4.1 Quadratische Gleichungen

1) Kann y ein Funktionswert von f(x) sein? Entscheiden Sie ohne zu rechnen mit ja oder
nein. Begründen Sie Ihre Antwort.

a) y = 0; f(x) = (x− 2)2 + 1
b) y = −2; f(x) = (x+ 1)2 − 3
c) y = 1; f(x) = (x+ 2)2 − 1
d) y = −3

2 ; f(x) = (x− 1)2 − 1
2

e) y = 5; f(x) = −(x+ 5)2 + 1

2) Lösen Sie die folgenden Gleichungen.
a) x5 = 3x3

b) x3 + 6x2 = 2x

3) Bestimmen Sie den Parameter a so, dass die Funktion nur eine Nullstelle hat.
a) f(x) = (x− 1)(x+ a)
b) f(x) = (x+ 12)(3x − a)

4) Bestimmen Sie die Lösungsmenge.
a) Die Differenz der Kehrwerte zweier benachbarter gerader Zahlen ist 1

24 .
b) Das Verhältnis zweier Zahlen ist 2 : 3. Die Summe ihrer Quadrate beträgt 208.
c) Das Produkt der Ziffern einer zweistelligen Zahl ist 48. Vertauscht man die Ziffern, so wird
die Zahl um 18 größer.
d) Die Einerziffer einer zweistelligen Zahl ist der Vorgänger ihrer Zehnerziffer. Die Zahl selbst
ist um 7 größer als das Quadrat ihrer Quersumme.

5) Zwei Zahlen unterscheiden sich um 20. Welches der möglichen Zahlenpaare hat das kleinste
Produkt? Wie groß ist es?

6) Eine Rechteckseite ist 6 cm lang. Die Diagonale ist 5
4 -mal so lang wie die andere Seite.

Welchen Umfang hat das Rechteck?

7) Die Diagonale eines Computerbildschirms beträgt 43 Zoll und das Seitenverhältnis der
beiden Seiten des Bildschirms 16

9 . Wie lang sind die Seiten des Bildschirms in cm?
Hinweis: Es gilt 1 Zoll = 2.54 cm.

8) Lösen Sie folgende quadratische Gleichungen.
a) 0 = 3x3 + 2x2 + x
b) 0 = x4 − 13x2 + 36
c) 0 = 2x5 − 26x3 + 72x

Tipp: Erinnern Sie sich an das, was Sie bei a) und b) gemacht haben.

9) Bestimmen Sie die Scheitelpunkte folgender Parabeln.
a) f(x) = 2x2 − 3x+ 2
b) f(x) = −5x2 − 10x+ 12
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4.2 Quadratische Ungleichungen

Berechnen Sie die Lösungsmenge und stellen Sie sie graphisch dar.
1) x2 > 16

25

2) x2 < 25
4

3) (x− 5
6)

2 ≥ 49
36

4) (x+ 3)2 ≤ 36
25

5) Mit einem Gitter von 8m Länge soll auf einer Wiese ein rechteckiger Laufstall für Meer-
schweinchen abgegrenzt werden. Wie sind die Längen der Rechtecksseiten zu wählen, wenn
der Flächeninhalt mindestens 3.5m2 betragen soll?

6) x2 + 3x < 0
7) 9x2 − 6x ≥ 5
8) 9x2 − 6x+ 1 > 0
9) 9x2 − 6x+ 1 ≤ 0
10) 49x2 − 42x+ 5 < 0
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5.1 Potenz- und Wurzelrechnung

1) Vereinfachen Sie die folgenden Terme.
a) x−n · x0
b) xn+1 · x−(n−1)

c) x−n+1 · y−n+1

d) (x+ y)n−m · (x+ y)n−m

e) ((−a)2n−1)−n−1

f) (a3p)4p

g) ((x− y)n+1)n+1

h) (3x+ y)2(3x− y)2

i) 5a9b3

7c4
· 10c3

28a5b7

j) (7a−7b)5

(a−b)

2) Vereinfachen Sie die folgenden Terme.

a) (
√
5
3 )3

b) (
√
3√
5
)4

c) (x
√
2

y
√
5
)−4

3) Formen Sie die Terme so um, dass im Nenner keine Wurzel mehr vorkommt.
a) 3√

a

b) a
5
√
a

c) 1√
a−

√
b

d) 1
1+

√
a

e) 5+
√
x

5−
√
x

f) 3+2
√
x

3−2
√
x

88



5.2 Exponentialfunktionen

1) Für bestimmte Untersuchungen verwendet man in der Medizin ein radioaktives Jod-Isotop,
das schnell zerfällt. Von 1 mg sind nach 1 Stunde jeweils nur noch 0.75 mg im menschlichen
Körper vorhanden.
a) Nach wieviel Stunden sind von 1 mg zum ersten Mal weniger als 0.5 mg vorhanden?
b) Wie groß ist der Zerfallsfaktor zur Zeitspanne 1 Stunde bzw. 2, 3 oder 5 Stunden?

2) Bei einem Blutalkoholgehalt ab 0.5 Promille werden Kraftfahrer mit einem Bußgeld oder
mit Führerscheinentzug bestraft. Alkohol wird von der Leber so abgebaut, dass sein Gehalt
im Blut um etwa 0.2 Promillepunkte pro Stunde abnimmt.
a) Ein Zecher geht um 3 Uhr nachts mit einem Blutalkoholgehalt von 2.3 Promille schlafen.
Um wieviel Uhr ist der Blutalkoholgehalt kleiner als 0.5 Promille? Wann ist er Null?
b) Vergleichen Sie den Abbau des Alkohols im Blut mit dem Abbau des radioaktiven Jods
im menschlichen Körper.

3) Durch Einleitung einer giftigen Chemikalie in einen Stausee ist das Wasser so verunreinigt
worden, dass ein Badeverbot erlassen werden muss. Im Stausee wurden 135 ppm der Chemi-
kalie gemessen. Die Verunreinigung nimmt langsam ab, und zwar um 10% pro Woche. Das
Badeverbot kann aufgehoben werden, wenn die Verunreinigung den von den Gesundheits-
behörden festgesetzten Grenzwert von 25 ppm unterschritten hat. Nach wie vielen Wochen
ist das möglich?

4) Sind folgende Überlegungen richtig oder falsch? Begründen Sie Ihre Antwort. ”Wenn man
pro Jahr 4 % Zinsen bekommt, dann hat sich Kapital nach 25 Jahren verdoppelt, denn
25 · 4% = 100% und 100% + 100% = 200% = 2, und das heißt Verdoppelung.”
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5.3 Logarithmen

1) Berechnen Sie folgende Logarithmen.

a) log5

(
3
√
5√
5

)

b) log 1

4

(
√
2)

2) Fassen Sie so weit wie möglich zusammen (ohne Taschenrechner!).

a) 2 log25(4) + log25(5)− 4 log25(2)

b) 2 log8

(
1
2

)

+ 3 · log8(2)

c) log3

(
3
4

)

+ log3

(
8
11

)

− log3

(
54
11

)

3) Vereinfachen Sie die Terme so weit wie möglich.

a) log7 (x
3)− log7(

√
x)

b) log3 (2u)− 2 log3(u) + log3 (u
2) + log3 (

1
u
)

c) log3 (a
2)− 2 log3 (a

4)

d) loga (x
2) + loga (x

5)− loga (x
6)

e) loga (4x) + loga (4x
3) + loga (2x

2)

4) Lösen Sie die folgenden Gleichungen.

a) loga2(
3
√
a) = x

b) logx(9) = 4

c) log25(x) = −1
4

d) log81(x) = −3
2
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5.4 Exponentialgleichungen

1) Wassermelonen wachsen anfangs so schnell, dass sich ihre Masse täglich um 13% vermehrt.
Nach wie vielen Tagen hat eine ursprünglich 1.3 kg schwere Melone die Masse 4.6 kg?

2) Ein exponentielles Wachstum erfolgt täglich um 3% ( bzw. -4%).
Berechnen Sie die Verdoppelungs- bzw. die Halbwertszeit.

3) Berechnen Sie die Halbwertszeit von
a) Phosphor 32. Jeden Tag zerfallen 4.7% der vorhandenen Atome.
b) Plutonium 239. In 1000 Jahren zerfallen 2.8% der vorhandenen Atome.

4) Bei der Entladung eines Kondensators wird alle 5 Sekunden die Spannung gemessen.
Handelt es sich bei der Funktion t 7→ U um eine Exponentialfunktion?

t (Zeit in s) 0 5 10 15 20

U (Spannung in V) 10 6.8 4.6 3.1 2.1

Wenn ja, geben Sie die Funktionsgleichung an.

5) Die Empfindlichkeit von Filmen wird sowohl in amerikanischen ASA-Werten als auch in
deutschen DIN-Werten angegeben. Die Zuordnung ASA 7→ DIN kann näherungsweise durch
DIN = 1 + k · lg(ASA) beschrieben werden. Bestimmen Sie k. Kontrollieren Sie Ihr Ergebnis
mit den übrigen Werten der Tabelle.

DIN 18 21 24 27 31

ASA 50 100 200 400 1000
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